

Building Nostr

Table of Contents

Introduction: Nostr is for Builders 6 ..

1. Complex Problems, Simple Solutions 7 ..

The Economics of Censorship 7 ..

A Path Forward 9 ..

A Simple Protocol 10 ...

2. Events and Kinds 12 ..

A Single Data Type 13 ..

Numbers, not Names 14 ..

More Kinds, Less Ambiguity 15 ..

Time is Hard 17 ...

Content and Tags 18 ...

Behavior and Data 19 ..

Behavior and Data Part Deux 21 ..

Deleting Events 23 ..

Filtering Events 23 ..

A Light Touch 24 ...

Backwards Compatibility 26 ..

3. Signatures and Identity 28 ..

Information Wants to Be Free 28 ...

Publicity Technology 29 ..

Dis-intermediating Data 30 ...

Your Very Own Number 31 ...

Building Nostr

Agency and Identity 32 ..

Identity Webs 33 ...

Holding Keys 35 ..

Naming Keys 37 ..

4. Relays are Repositories 39 ..

Why WebSockets 39 ...

Multi-Master 41 ..

Functional Relays 42 ...

Replication and Routing 44 ..

The Outbox Model And Friends 45 ..

Bootstrapping 49 ..

Relay Hints 51 ...

Content Migration 52 ..

Relays as Transport 54 ..

Relay as Design Pattern 55 ..

Relay as Proxies 56 ..

Wrapping Up 57 ..

5. Radically Open 58 ...

Politics and Protocol 60 ...

Thinking in Public 63 ...

Backwards Compatibility 64 ..

Hackability 66 ...

Application Ecosystems 69 ..

6. Value for Value 72 ..

Money is Time 73 ..

Customers, Patrons, and Participants 74 ..

Paying It Forward 76 ...

Building Nostr

Zaps and Nutzaps 78 ...

7. Communities 81 ...

Communities are for People 81 ..

Digital Architecture 82 ..

Social Clusters 83 ..

Group Chats 84 ...

Discussion Forums 85 ..

Owned Communities 88 ..

Commons 89 ...

Roles and Spaces 90 ..

Managing Complexity 92 ...

Interface Complexity 93 ..

Appendix A: Alternatives to Nostr 95 ..

Matrix and ActivityPub 95 ...

Scuttlebutt 96 ...

Pubky 97 ...

Bluesky 97 ..

What Makes Nostr Different 98 ..

Starting Over 99 ..

Appendix B: Resources 101 ..

NIPs 101 ...

Protocol development 101 ..

App lists 101 ...

5

Building Nostr

6

Introduction: Nostr is for Builders

Nostr stands for "Notes and Other Stuff Transmitted by Relays." It was created as an

answer to social media censorship by big tech companies, but has since become much

more. Chances are, if you're reading this book you're already interested in Nostr

development. Maybe it's the cryptographic identity that hooked you, or the network

effect that application interoperability makes possible. Maybe it's the social media

use cases, or the "other stuff" that brings you here.

Nostr is many things to many people — the architecture is simple, but a diverse

application ecosystem has grown from it.

Nostr is an open protocol, which means anyone can build on it and anyone can extend

it. It relies on digital signatures for data authentication and self-hosted or otherwise

user-aligned infrastructure for hosting.

The simplest way to think about it is as a Twitter alternative, but one where it's very

difficult for any single actor to de-platform users. But Nostr is far broader than just

"social media". Other applications from media hosting to decentralized marketplaces,

reviews, chat rooms, calendar events, and even virtual pets have found ways to

leverage Nostr in their own domain.

This book is for builders — for people who are excited about decentralization and

have ideas for a product or service that would benefit from interoperability and user-

oriented software. This book presents a philosophical overview of Nostr with an

emphasis on the responsibility developers have to keep it decentralized.

This book will cover some of the basics in passing, but primarily as a stepping stone to

explaining a paradigm for how to use the protocol effectively. For a more technical

overview of the protocol itself, take a look at NostrBook.

Like Nostr itself, this book is not a comprehensive guide for how Nostr works (or

ought to work). It is only a set of opinions, ideas, and guidelines for people who wish

to create software for themselves or others — software that enriches its users rather

than exploiting them.

https://nostrbook.dev/

Building Nostr

7

1. Complex Problems, Simple Solutions

To begin with, I want to present a summary of how the profit motive of internet

businesses creates a system of incentives which drives censorship and surveillance

capitalism, hurting users and undermining corporations' own value propositions.

Next, I'll describe what sort of solution Nostr actually is, and end with quick survey of

how Nostr works at a high level — just so we're all on the same page.

The Economics of Censorship

Nostr was originally designed to be "censorship-resistant". But this is only one part of

a bigger vision. Nostr is designed to promote the digital freedoms of users — things

like privacy, access to information, anonymity, freedom of association, and credible

exit. Because of how cryptography was adopted (primarily by institutions) in the

early days, the internet is no longer aligned with the interests of its users, but has

largely been captured by "platforms".

As a result, we have a state of rent-seeking in which the users who contribute all the

value that the internet has to offer are exploited, undermined, manipulated,

deceived, and sold by the custodians of that value. This is a far cry from the

humanitarian dream of the early internet. In the words of Tim Berners-Lee,

We create the Web, by designing computer protocols and software; this process is

completely under our control. We choose what properties we want it to have and not

have[...] The goal of the Web is to serve humanity. We build it now so that those who

come to it later will be able to create things that we cannot ourselves imagine.

In the fifteen years since this was written, the internet has only become more

predatory, and proprietary. Everywhere you go, you're being tracked — maybe for

the purposes of understanding your behavior to serve you ads, maybe for reasons

more convoluted, but always in the interest of the ones doing the tracking.

This isn't to say the internet isn't a net positive to those who use it. The internet is the

single most successful technology in human history for promoting access to

information, alternative community, and trade. But it is not what it should be.

Reforming the internet requires active investment from those who stand the gain or

lose the most from how it evolves — its users. No one can do this for us; we have to

hold companies and platforms accountable ourselves. And in order to do that, we

https://newsletter.squishy.computer/p/credible-exit
https://newsletter.squishy.computer/p/credible-exit
https://www.scientificamerican.com/article/long-live-the-web/

Building Nostr

8

need to understand why censorship happens.

Censorship is not the product of mere arbitrary exercise of power, but of incentives.

In authoritarian regimes, censorship is implemented to protect the regime's power.

In business, censorship is implemented to protect the business' revenue.

Traditionally, products are sold directly to customers, who then get access to the

good or service they've purchased. This business model can transfer to some extent

to the realm of information-based products, particularly in a business-to-business

setting, where information can be justified in terms of greater productivity.

But consumer software is an entirely different story. If your users are only there to

improve their quality of life through access to entertainment or communication, and

the marginal cost of production trends toward zero for digital goods, then the price

will also trend toward zero because competitors can always offer the same product

at a lower price.

Combine that with the imperative for platforms to aggressively acquire users, and

you get a strong downward pressure on the upfront pricing of software products.

"Network effect" is the idea that a network's value does not grow linearly with the

number of users, but quadratically with the number of connections between users.

Building a large network requires significant resources in order to fund growth or

stay ahead of competitors. These resources in turn must be provided by people with

capital. As a result, businesses that rely on scaling network effects are typically

funded by investors and oriented at a return on investment. This includes social

media platforms and similar businesses, such as search engines, marketplaces, and

entertainment platforms.

Capitalists want to see the businesses they've invested in make a profit. The best way

to make a profit in a market, according to Peter Thiel's Zero to One, is to establish a

monopoly. Because user retention depends on network effects, market saturation is

always the goal, and switching costs must be high — companies must "capture" their

users.

The art of creating this moat seems to have been perfected. Facebook has been

around for a long time, as has Google. In contrast to early internet companies like

MySpace, Yahoo, and AOL, these second-generation internet giants have learned

how to simultaneously retain and monetize their users.

Very little of these companies' revenue comes from direct monetization. Instead,

Building Nostr

9

these big tech companies monetize their users by making them the product. Users

have two things that platform owners can sell: their attention and their data.

Platforms can only sell these things because they have access to them by virtue of

being intermediaries. Platforms subsist by inserting themselves into private or public

relationships in order to siphon off these intangible goods.

This works because the majority of internet users either don't believe their attention

or data are worth anything ("why do I need privacy? I have nothing to hide"), or feel

helpless to opt out of the attention economy. Seeing a billboard in your peripheral

vision or having cameras record your license plate seem hardly comparable to paying

a monthly fee for road use. Whether you care about being recorded or not, you're

still going to use the roads.

It's true that data and attention are not particularly valuable on an individual basis.

But they're massively powerful in the aggregate. "Big data" is not mere information,

but the ability to predict patterns of behavior, which can then be used at scale to

manipulate people — to buy, believe, and act.

Advertising is not just about informing willing buyers about products and services,

it's about conditioning people to act in predictable ways. Social engineering (like all

engineering) is progressive and totalizing — unless restrained. The cost of giving

away our attention and data to these internet intermediaries is, ultimately, the loss of

our free will.

This is particularly true because users are progressively getting less and worse

service in exchange for their time and attention. Because big internet companies

have access to economies of scale that individuals don't, they have the ability to

asymmetrically impose complexity costs on users who fall outside of the streamlined

"ideal customer profile" they've built their business on. Quoting from this blog post:

Bigger players like corporations and governments gained a big systemic advantage

over individuals: they make the rules but they don’t bear the costs of the rules

breaking. They increase the complexity of everyday life and instead of being

punished for it, they are rewarded for it.

A Path Forward

This slide isn't inevitable. But it's also human nature — everyone wants something for

nothing, and so internet users have voluntarily given up their free will to gain

https://happyfellow.bearblog.dev/computational-tyranny/

Building Nostr

10

connectivity, entertainment, and efficiency. Simply pushing back is not enough — the

problem is structural, and time has allowed its beneficiaries to entrench their

position.

This problem needs more than a technical solution — politics, culture, community,

and capital all have roles to play here. Nostr's role is to offer tools that individuals can

use according to their own values, and for their own interests. Nostr makes it

possible for internet users to preserve their own digital sovereignty and hold tech

platforms accountable.

My personal hope for Nostr is that it will aid in the restoration and cultivation of

human flourishing and agency in a world increasingly mediated by digital technology.

Nostr does not solve every problem. The ones it does solve, it sometimes solves

poorly. Nostr is not a panacea, it is a toolset that can be applied to our benefit or to

our detriment, but which has certain intrinsic qualities that the internet desperately

needs right now.

I want to emphasize that it is only through people that any of the internet's ills can be

cured. Nostr is not a comprehensive system for restraining digital evil (such a thing

would be itself totalitarian), but a way of allowing individual and community agency

to be exercised in solving problems germane to individuals' and communities' own

particular circumstances.

A Simple Protocol

Nostr is in many ways a "dumb" solution to a complex problem. Incentives, structures

of power, and technological ecosystems are irreducibly complex, and impossible to

understand in detail. But there are key architectural patterns that the modern

internet is built on which enable and promote its particular dysfunctions — most

importantly, the centrality of servers for both data storage and authentication.

Instead of using server-based authentication, Nostr leverages cryptography in order

reduce the role of servers from powerful hubs to disposable, user-aligned

repositories. To join the Nostr network, all a user has to do is unilaterally generate a

secp256k1 cryptographic key pair.

Any number of these cryptographic identities can be used in parallel for whatever

purpose — whether to partition user data, create pseudonyms, or to encrypt data.

Most importantly, key pairs can be used to create digital signatures of content, which

are then embedded in data structures called "events" alongside the user's public key,

Building Nostr

11

the event's hash, and some other information.

Once created, events are then transmitted to other people, primarily via "relays,"

which are simple WebSocket servers, although they can also be sent over Bluetooth,

emailed as attachments, or even written down and sent by carrier pigeon. The relay

protocol is very simple, dealing almost exclusively with sending, receiving, rejecting,

and requesting events. This makes it possible to create multiple interoperable

implementations.

The content types (or "kinds") the protocol describes are very loosely coupled,

allowing a wide range of applications (or "clients") to be built that can talk to each

other. Not every client needs to implement the entire protocol though — Nostr is

ideal for building small apps that do one thing, and which don't have switching costs.

Here's an example of what this architecture makes possible: Imagine following

someone on your microblogging platform of choice, then opening your blog reader

and all of their posts are already there. You highlight some text and type a comment.

Later, you go back to your microblogging platform and read replies to the comment

you made — written by people who follow you in dozens of other apps.

In many ways, Nostr has the potential to be an upgrade to the entire internet. By

decoupling data storage (relays), identity (keys), and functionality (clients), it

becomes much easier to compose whatever pieces you might need in new and

interesting ways. That's a big claim, and there are definitely some things that Nostr

can't do well.

In terms of the CAP theorem, Nostr has no consistency guarantees, but plenty of

availability and partition tolerance. Nostr is essentially a distributed database which

allows every node to operate independently without any coordination. By copying

the same (signed) data to multiple relays, it will always be available even if some

nodes go offline or ban the author.

To recap: Nostr combines cryptographic identities, interoperable data storage, and

an open ecosystem of content types to create a system where neither user identity

nor user data can be captured by a single entity. This subverts the central role that

servers have in the modern internet, placing users at the center, rather than

corporations.

Building Nostr

12

2. Events and Kinds

The term "NIP" stands for "Nostr Implementation Possibility", a term the community

uses to refer to Nostr protocol specifications. These specs might describe content

types, behavior for relays, expectations for clients, or sub-protocols for other related

services like signers, wallets, and "data vending machines" (services which perform

arbitrary computation and expose an event-based interface).

When writing Nostr specifications, keep in mind that a key part of the Nostr design

ethic is: trust users, trust developers, and keep things simple.

Protocol documents are often bloated with clarifications for every edge case,

resulting in standards no one actually reads. Nostr specifications should be brief and

to the point so that regular people (rather than spec wonks) can understand them

and hack on the protocol. Again, in the words of Dave Winer:

I write for people who have brains, like to think, are educated, care about interop. I

understand that people reading specs are not computers.

Because nostr is open, anyone can write a spec and publish it anywhere they want.

Unfortunately, this also means that there's no comprehensive list of specs anywhere.

While Nostr is about as anarchic a protocol as you can get, there remains an

irreducible political component to protocol design. Software cannot be interoperable

if communication doesn't exist. Now, this communication might simply take the form

of reverse-engineering other people's events and code, but communication is

(obviously) improved through the use of language.

Right now, the best place to collaborate is on the github repository. This is a carefully

curated collection of Nostr specs, and the place the most Nostr developers

participate (open pull requests are a great place to get feedback and signal support

for emerging specifications). There has been some work towards creating a solution

that exists purely on Nostr where we can get permissionless participation, a

comprehensive list of specs, and a system for consensus, but so far a complete

solution hasn't really emerged.

With that in mind, let's get into events — the "what" of Nostr.

https://this.how/standards/
https://github.com/nostr-protocol/nips

Building Nostr

13

A Single Data Type

All data on Nostr (with very few exceptions) is contained in "events". Here's an

example of an event:

{
 "id":
"b13ef435ad614ee37b74f6d6e8055c303a79b95354dcb65b075fb3964a6731e0",
 "pubkey":
"3bf0c63fcb93463407af97a5e5ee64fa883d107ef9e558472c4eb9aaaefa459d",
 "created_at": 1682377261,
 "kind": 1,
 "tags": [
 ["p",
"73c7f6d5bb599bb7d7cee84c72e89dbd549df53da522ed6c7611055cc0db64bc"],
 ["a",
"31337:73c7f6d5bb599bb7d7cee84c72e89dbd549df53da522ed6c7611055cc0db64bc:
5jqxarp0z1kr7yem"]
],
 "content": "is this Lana Del Rey?",
 "sig":
"91d7ae3d5a7ef72e917b52829f0dd76538be2b1720f3c09d0bf71131cffd81f18b89956
ef2bab9ea44e656edd96529d0d3fc71c29e305a5378fb4087bfb08f7a"
}

Here's what those fields mean:

id is a hash of the event (serialization is defined in NIP 01)

pubkey is the public key of the event author

created_at is the second-granularity unix timestamp for when the event was

created

kind is the content type of the event, which determines how it should be

handled

tags is a list of lists of strings, which provide metadata for the event

content is a (usually) human-readable representation of the event for display

sig is a secp256k1 cryptographic signature of the event id

The core of the event is the cryptographic properties: id, pubkey, and sig. These

three properties make it possible to verify the event author, and refer to the event by

content hash rather than location. We'll talk more about how to work with

Building Nostr

14

cryptographic identities later, but it's hard to understate just how important these

properties are. For now though, I want to get into a different topic: data modeling.

Numbers, not Names

Every event has a "kind," which is a 16-bit integer. An event's kind determines what

that event means (it's "content type") and how it should be interpreted. Using

numbers instead of names is an unconventional choice, but it has certain benefits.

In a distributed system built on signed data, names can't change. Once you choose a

particular term, you're stuck with it forever. The nice thing about integers is that

they're meaningless, which allows for any number of subjective interpretations of a

single standard, while keeping its meaning intact.

Names have a weakness, in that they import meaning with them into any new

context. This meaning might vary from person to person, or the person who chose

the name might have made a poor choice. This results in confusion about the purpose

and semantics of a given data type.

Numbers carry no meaning (except in a memetic sense, like how Nostr uses kind
1984 for content reporting). This frees up every implementer to assign their own

term to an event based on their understanding of it. If their understanding of the

content type changes, they can change the term they're using for it without affecting

its actual meaning. This allows linguistic conventions to develop independently of the

technical characteristics of a thing.

Here's how Dave Winer explains this approach to naming things:

I once led a standards discussion beginning with this rule: We always had to come up

with the worst possible name for every element. That way when someone said "I

think foo is better" (and they did) we could all laugh and say that's exactly why we

won't use it.

It totally doesn't matter what we call it. We can learn to use anything. There are more

important things to spend time on.

Think of people whose first language isn't English. To them the names we choose are

symbols, they don't connote anything.

https://this.how/standards/

Building Nostr

15

An alternative approach to creating collision-proof names is that of "reverse domain

notation." This is a great way to create an identifier that does not collide with anyone

else's, but (apart from having the same semantic difficulties as unqualified names) it

also implies some level of ownership of a given content type.

But Nostr is a permissionless protocol. Any event that is signed and sent is valid

simply by virtue of existing (at least to the extent that it is accepted as valid by a

meaningful proportion of the network — more on that in chapter 5). Because there is

such a diversity of content types, and because the protocol is open for extension, it's

impossible to validate every event kind based on data structure, which naturally

limits validation to hash and signature validation (and a few other things).

This is very different from how we usually think about protocols. Normally, protocols

use natural language to describe data structures or processes that must be followed.

On Nostr, kinds are their own vocabulary. Because they are numeric, they have no

metaphorical referent, which means that usage determines meaning.

This is the same way that natural language works. Usage evolves over time, resulting

in a mess of neologisms, malapropisms, idioms, and ambiguities. Dictionaries were

invented only as a way of understanding language as it already exists. The Oxford

English Dictionary includes not only definitions, but also the history and etymology

of words, defined by actual use.

The same word might vary from place to place. You might have the same word with

different meanings in different places. Language is organic and very difficult to

systematize. Nostr embraces this ambiguity — which is admittedly a risky choice,

since we don't know if software-mediated language can evolve in the same way as

human-to-human language.

But because of this design choice, Nostr is a very humble protocol - it is little more

than an empty shell which users can then fill with content types that solve their use

cases.

More Kinds, Less Ambiguity

This isn't to say that there aren't conventions that should be followed when

designing new content types.

In Structure and Interpretation of Computer programs, Alan Perlis famously claimed:

https://web.mit.edu/6.001/6.037/sicp.pdf

Building Nostr

16

It is better to have 100 functions operate on one data structure than to have 10

functions operate on 10 data structures.

Because nostr is a social protocol, it depends on network effects, not just of users,

but of standards. The more implementations that use a single kind, the more users

are in turn able to interact. So when creating a new standard, check to see if there is

an existing spec and follow it if at all possible. Dave Winer again:

If you want to add a feature to a format, first carefully study the existing format and

namespaces to be sure what you're doing hasn't already been done. If it has, use the

original version. This is how you maximize interop.

Nostr abides by this rule to the extent that implementations prioritize

interoperability over functionality. As the NIPs repo stipulates, "there should be no

more than one way of doing the same thing". Fewer data formats means less

complexity, and greater interoperability.

This is a corollary to this, which at first glance might seem contradictory, but which

reinforces the ability to deal unambiguously with a given data structure: don't

pretend different data structures are the same thing. We see this mistake in

JavaScript, where Arrays are actually a special type of Object. This is not what Perlis

meant.

To apply this to Nostr, if there are two approaches to the same problem that are

equally valid, use the one that has the most adoption. At the same time, if there are

two use cases that are very similar but differ in minor ways, it's almost always a

better choice to split it into multiple kinds. For example, NIP 52 uses separate kinds

for time-based and date-based events. This not only reduces ambiguity, but also

allows clients to work more easily with one or the other content type.

Some data might make sense to group together in a single event, for example kind

profile metadata. But the more data is attached to a single event, the more

contention there will be over writing to that event, and the more conflicts become

possible. If I had to redesign profile metadata today, I would create separate events

for user name, profile picture, bio, lightning address, nostr address, and every other

field on the event. This would be marginally more data for clients to download, but it

would prevent data loss in the event of incomplete synchronization.

When choosing whether to create a new kind or adopt an existing one, it's important

to understand that the "one way" rule is only an ideal, and can still be violated if

https://this.how/standards/
https://github.com/nostr-protocol/nips/blob/master/52.md

Building Nostr

17

design goals vary, or an existing spec is broken in some crucial way. Just be prepared

to defend your divergence from convention if you want other people to migrate to

the new way of doing things.

Time is Hard

There are an incredible number of falsehoods programmers believe about time.

Dealing with time is inherently difficult, especially in a distributed system which has

no single time-stamping authority.

For this reason, Nostr's core protocol entirely punts on the problem — the

created_at timestamp on events is supplied unilaterally by the event author, who

can falsify the timestamp with no real constraints.

There are certain mitigations for this, for example NIP 03 allows for the use of Open

Timestamp Attestations to prove an event was published after a certain point in time.

In general though, Nostr chooses to solve this problem by moving it from the

technical to the social layer. In other words, if you don't trust someone to be honest

about their timestamps, why are you reading their content anyway? Reputation is

key in social media, and provides a natural solution to many technical problems.

Nostr leans into this further by only supporting second-granularity timestamps. This

is consistent with the very simple, human-oriented approach to social media that

Nostr aims for. On a human time scale, sub-second granularity rarely matters. The

temptation with millisecond granularity is that you might expect to be able to reliably

sort events, but in a distributed system, that's not actually possible without

centralized coordination. Clock skew across different computers is commonly more

than one second, so messages may show up out of order even with millisecond-

granularity timestamps.

A possible solution to this is to use something like vector clocks where every piece of

data increments a conflict-free counter, or to build linked-list style data structures

where every event refers to a previous piece of data in the chain. By default, Nostr

does not specify a mechanism for this, which allows for natural solutions to emerge

for each individual use case. Some content types form a natural tree structure, others

explicitly provide affordances for enforcing order.

Dealing with time in a distributed system is frequently use-case dependent. By

providing a very weak mechanism for working with time, Nostr leaves the door open

to use-case-specific strategies for working with time.

https://infiniteundo.com/post/25326999628/falsehoods-programmers-believe-about-time
https://github.com/nostr-protocol/nips/blob/master/03.md
https://opentimestamps.org/
https://opentimestamps.org/

Building Nostr

18

Content and Tags

Finally, we have content, and tags. An event's content is generally a human-

readable payload, while tags are structured data.

In reality, content isn't always human-readable. There are several event kinds that

encode JSON or encrypted data into the content field. That pattern should be seen as

an exception — this precedent was set early in the protocol when conventions for

designing events weren't well established. Data should generally go in the tags array,

and human-readable information should go in the content field.

You might be wondering why tags is a list of lists, rather than an associative data

structure. The advantage of a nested lists data structure is 1. you can include the

same key twice, and 2. tags preserve order. You see similar data types with ordered

dictionaries in Python, and URL query parameters. This allows for more flexible data

modeling than simple dictionaries would provide.

Tags are always an array of strings, not numbers or composite data structures. This

keeps parsers simple (at the cost of sometimes doing dumb things like encoding

numbers as strings or nesting JSON-encoded strings in JSON data structures).

Usually there are at least two entries, conventionally (though not necessarily) being

treated as key/value pairs. Some specifications include four or more positional items

in a tag, while other include only one.

For example, the NIP 70 protected tag ['-'] has no values. The presence of the tag

merely indicates that relays should only accept such event if they're published

directly by their author.

Another example is the NIP 18 q tag, which is used to reference a quoted event. This

tag contains an event ID, a relay URL where the event might be found, and the

pubkey of the event's author, for example: ["q", "<event id>",
"wss://relay.example.com/", "<pubkey>"].

In general, tags should be as short as is reasonable. Two to three entries is all you

really need; if you have more than that, you're probably trying to pack more data into

a single tag than really belongs. A better approach is to create other tags that form an

index that can be used to look up additional metadata. This makes it easier for

consumers to parse the tags array instead of having brittle positional arguments.

For example (this isn't how Nostr actually works), the above q tag could be split into

https://github.com/nostr-protocol/nips/blob/master/70.md
https://github.com/nostr-protocol/nips/blob/master/18.md

Building Nostr

19

q, relay_hint, and pubkey_hint tags:

[
 ["q",
"29916f5671eb3f93ee1d3f655ef14109591f6905ff1328a76fccc27bf6b449a6"],
 ["relay_hint",
"29916f5671eb3f93ee1d3f655ef14109591f6905ff1328a76fccc27bf6b449a6",
"wss://relay.example.com/"],
 ["pubkey_hint",
"29916f5671eb3f93ee1d3f655ef14109591f6905ff1328a76fccc27bf6b449a6",
"12fec3c26b3efdaa521db0bd02056cca90d401aafff0233635f78da2f4cb8d44"]
]

The benefit here is that new information about the event ID can be added

associatively. It also allows for adding multiple values for a single key (like if you

wanted to include multiple relay hints). The downside is that this pattern makes

events more verbose.

This is the same trade-off as exists in programming languages when choosing named

vs positional arguments (for example python's * construct). Named arguments make

it a lot easier to maintain backwards compatibility as a function's signature evolves.

Behavior and Data

Tags can fall into one of three categories: data, filters, and behavior. These three

things are often intermingled and hard to differentiate. This terminology is my own,

and not reflected in any specifications or event structure, but I think it's useful for

understanding how different design concerns interact.

"Data" tags are primarily useful for handling or displaying the event. "Filter" tags

might also be data tags, but are especially useful for filtering and retrieval. "Behavior"

tags introduce additional context that determines how implementations should

handle an event, independent of the specification which defines the event's kind.

An example of a "data" tag is the NIP 92 imeta tag, which includes metadata for a

URL for display. Because imeta is not a single letter, most relay implementations are

not going to allow filtering by #imeta (which wouldn't make sense anyway). imeta is

only useful for enhancing the rendering and handling of a given event after you've

already retrieved it.

https://github.com/nostr-protocol/nips/blob/master/92.md

Building Nostr

20

In contrast, t tags are useful not only as data, but as filters, since they represent

"hashtag" or "topic". Since they are a single letter, it's possible to filter events by

topic.

Finally, tags like NIP 40's expiration tag are entirely orthogonal to the semantics of

an event's kind, and can be applied to any event in order to request special handling

by relays.

These three types of tag are subtly different; as a result they were conflated when

Nostr was originally designed. I believe this was a design mistake which introduces

conflicts into the semantics of certain tags.

The difference between "data" and "filter" tags isn't too consequential because

filtering tags are often useful as data as well. Plus, the two are somewhat

differentiated based on whether the tag key is a single letter or multiple characters

(although this unnecessarily couples tag name and purpose — it may make sense at

times to index multi-character tags).

Behavior tags, on the other hand, are not defined by an event kind's spec, but by

some other NIP, and can be applied to any event. Here are some examples:

NIP 70 defines a - tag, which specifies that relays should only accept directly

from its author

NIP 29 defines the h tag, which is used in to publish an event to a "group" or

"room"

NIP 40 defines the expiration tag, which is used to request deletion after a

certain amount of time

NIP 89 defines the client tag, which can be used to indicate which client

published the event

These tags in particular aren't too problematic since they're not re-used in other

places, but there are some tags which are defined differently by different NIPs. An

example of this is the e tag, which is used in the following ways:

To indicate reply/reaction parent (NIPs 10, 25, 17)

To indicate which event a wiki article was forked from (NIP 54)

To request a merge into a wiki article (NIP 54)

To build a transaction history graph (NIP 60)

To reference auctions and bids (NIP 15)

To indicate any number of different event kinds in lists (NIP 51)

To indicate the object of a report (NIP 56)

https://github.com/nostr-protocol/nips/blob/master/70.md
https://github.com/nostr-protocol/nips/blob/master/29.md
https://github.com/nostr-protocol/nips/blob/master/40.md
https://github.com/nostr-protocol/nips/blob/master/89.md
https://github.com/nostr-protocol/nips/blob/master/10.md
https://github.com/nostr-protocol/nips/blob/master/25.md
https://github.com/nostr-protocol/nips/blob/master/17.md
https://github.com/nostr-protocol/nips/blob/master/54.md
https://github.com/nostr-protocol/nips/blob/master/54.md
https://github.com/nostr-protocol/nips/blob/master/60.md
https://github.com/nostr-protocol/nips/blob/master/15.md
https://github.com/nostr-protocol/nips/blob/master/51.md
https://github.com/nostr-protocol/nips/blob/master/56.md

Building Nostr

21

To indicate moderator approval of a post (NIP 72)

That a single tag can sustain so many different meanings is a testament to the

effectiveness of the kind system.

This would all be fine, if e tags didn't also indicate the "mention" of an event by ID,

which is specified in old versions of NIPs 10 and 18, and 23. This pattern of

"mentioning" events by e tag is intended to be applicable to any event — but this

comes into conflict with all the special meanings enumerated above, which means it's

impossible to unambiguously use the "generally applicable" meaning of the e tag on

any event kind that defines e tag semantics.

This problem could have been solved by separating data, filter, and behavior tags into

separate fields on an event, rather than coupling a tag's name with its semantics. One

e tag could be placed in a filter_tags field, and a different one in the data_tags
field. But this is just me imagining alternate futures. In practical terms, this problem is

just something to keep in mind when designing tags that can be applied to "anything",

especially when they need to be indexable.

Here's a simple heuristic for dealing with overloaded tags: when resolving the

meaning of a tag, always first look at the specifications for the event's kind, which has

the right (being the most specific spec) to override any general tag behavior. Only

secondarily should you look at specifications that define tags in a broad sense.

Behavior and Data Part Deux

Another example of this data/behavior design flaw is the idea of event kind ranges.

The idea of an "event" is that it is a self-contained, irrevocable fact. But for some use

cases, like kind 0 profile metadata, only the most recent event by a given pubkey is

really useful. So, in order to avoid a bunch of redundant profile metadata events, it

was decided early on that kind 0 should be "replaceable". In other words, every time a

user publishes a kind 0 event, the relay should delete all the old kind 0s from that

pubkey.

This freed up room in the database, but it also eliminated the ability to fetch multiple

versions of profile metadata, which meant that race conditions that occur as a result

of updating user metadata in multiple places at the same time could no longer be

resolved except by special purpose relays or services that retain all versions of

profile metadata.

https://github.com/nostr-protocol/nips/blob/master/72.md
https://github.com/nostr-protocol/nips/blob/master/10.md
https://github.com/nostr-protocol/nips/blob/master/18.md
https://github.com/nostr-protocol/nips/blob/master/23.md

Building Nostr

22

Events are amazing because their ID is the hash of their content, which makes them a

"referentially transparent" data type. In other words, events are "content

addressable" — if you have an event ID, you know the event is never going to change

underneath you.

But when replaceability was introduced, a new way to refer to an event even if the

content changes became necessary. And so the "address" was born. An address is a

string in the format of kind:pubkey:identifier which points to all events with the

same key, pubkey, and identifier.

This solution was also applied to kind 3 follows, and seemed useful enough to make

into a general pattern. As a result, different event "ranges" were invented in order to

provide certain variants of this behavior.

Kind 1 through 9999 (except 3) are "regular" events with no special behavior. Kind

10000 through 19999 are "replaceable" events which have no "identifier" address

component. The idea with these is that users can have only one event of each

"replaceable" kind. Kind 10002 relay selection lists are an example — when you

publish a new event of that kind, it replaces any previous ones.

The next range is kind 20000 to 29999, which indicate "ephemeral" events which are

addressable in the same way but have the additional behavior of not being retained

by relays - they're deleted immediately after being broadcasted to other clients that

are listening for them.

Finally, we have kind 30000 through 39999, which are called "parameterized

replaceable" events. These act the same way as "replaceable" events, but are

partitioned by an identifier contained in the event's d tag. This allows the user to

create multiple replaceable events for their pubkey. For example, editable kind

30023 blog posts allow you to "update" a post by creating a new event with the same

d tag as the original.

This all makes sense, but it has a major downside — it couples kind numbers with

behavior, regardless of what spec the kind is defined by. You might think this is fine

because specs can just choose a kind that is in the correct range. And that's mostly

true, except that these retention/replacement policies are really orthogonal to the

data type represented by the kind. It's entirely possible to conceive of multiple follow

lists, or a replaceable microblogging event.

This behavior really should have belonged in behavior tags, which would allow users

to select retention behavior for any event regardless of content type. In fact, we have

Building Nostr

23

an expiration tag, which is a superset of kind 2XXXX ephemeral event functionality,

making that entire kind range essentially redundant. Similarly, any event could be

made replaceable by adding a d tag (set to an empty string, if regular replaceable

functionality is desired).

But I digress. We might get these extensions in the future, but for now we have to

work with the limitations of kind ranges. My point is, when you're defining new event

types, you should have a slight bias towards regular, non-replaceable events because

they don't break referential transparency.

Deleting Events

One final bit of behavior that's worth mentioning in this context is deletion requests.

These are kind 5events that can either e tag an event's ID or a tag an event's

address. Relays receiving a kind 5 event are expected to delete all matching events

— provided the author is the same.

It's important that these be considered deletion requests, not actual deletions.

Relays are not obligated to honor the request (although in practice many do).

This is the thing about signed data. Once it's published, there's no way to un-sign or

un-publish the data. Anyone who has a copy can keep it. This is great for keeping

public figures accountable for their words and actions, but not great for taking

something down that shouldn't have been posted. Care has to be taken when using

signed data. This is true of unsigned data as well, which can always be screenshotted

or copied, but signatures remove deniability. This is a good trade-off for public

broadcast social media, but it is something to keep in mind.

Filtering Events

Another concept that is closely related to events is that of filters, which are a data

structure that allows clients to request specific events from relays. A filter is a

dictionary with one or more of the following fields:

ids is a list of hex-encoded event ids

authors is a list of hex-encoded pubkeys for matching event authors

kinds is a list of a kind numbers

since and until are an second-granularity unix timestamps for filtering based

on created_at

Building Nostr

24

limit is the maximum number of events relays should return in the initial

query

In addition, filters can be applied to event tags by prefixing the tag name with an

octothorpe (the "#" character) and adding it to the filter - for example, #p can be set

to a list of pubkeys in order match events with a matching p tag. Relays generally only

support filters for single-letter tags in order to reduce the number of database

indexes that have to be maintained.

There are some other less common filter extensions:

Prefix matches allow for matching event ID, pubkey, or tag value by partial

value

An additional search property is defined by NIP 50 and implemented by some

relays

Negative matches have been proposed, but rejected because of the impact

they would have on relay performance

A Light Touch

Dealing with other people's signed events is always going to require some

adversarial thinking. Events can be malformed, either from a buggy implementation

or from someone trying to attack software applications. A p tag might have an invalid

or missing value, or a relay hint that is trying to spy on users. Event content might

include HTML injection attacks, or illegal content.

Distinguishing between when to discard an event and when to try to handle it

anyway is difficult. The most important thing when handling events is to protect the

user from attacks. Everything else should be handled in a fault-tolerant way,

assuming incompetence rather than hostility.

It's important to note that Postel's "be liberal in what you accept" has two different

possible interpretations here. Fault tolerance does not mean repairing data that

contradicts established conventions. A common example of this is when clients

publish events with bech32-encoded data in tags instead of hex-encoded data.

This is of course a difficult judgment call, since as mentioned above the vocabulary of

nostr is idiomatic and evolving. The important thing is not to allow a minority, non-

standard data format to hijack a well-established content type. This can go some way

toward taming the chaos of a decentralized system, as well as protect against

https://github.com/nostr-protocol/nips/blob/master/50.md

Building Nostr

25

organized attacks that would attempt to "embrace, extend, extinguish" the protocol.

Here are a few examples of malformed data and how it should be handled:

If an event's signature is invalid, discard it — there's no way to prove it isn't

forged. There are of course exceptions to this, like with NIP 59 wrapped events,

which have no signature, but are still authenticated cryptographically.

If an event contains code intended to crash, denial-of-service, or hijack the

client, the client should protect itself using conventional defensive

programming techniques — by sanitizing HTML before displaying it, not using

regular expressions with user provided data, and by handling errors using null

checks and fallbacks.

If an event contains an adversarial relay hint or suspicious media URL, clients

should have a policy in place, informed by user preferences, which blocks

connections to unknown or untrustworthy hosts. This can be accomplished

through domain white/black listing, or through trust assessments based on

proof-of-work or the reputation of the event author.

If an event contains data that doesn't adhere to the relevant specification, for

example missing start or end times on a calendar event, clients might choose

to show a fallback value, e.g. "not specified", or an error indicator.

One reason to prefer fault-tolerant handling over aggressive validation is that strict

validation reduces interoperability unnecessarily by converting minor, recoverable

errors into catastrophic exceptions that ultimately result in a poor UX. Care has to be

taken to balance user protection, user experience, and long-term stewardship of the

protocol when making these decisions.

An additional wrinkle to this problem involves writing rather than reading events. A

number of bugs have emerged where data published by one client will be unwittingly

deleted by another client. Here are a few examples:

Some clients at one point started adding JSON-encoded relay selections to the

content field of kind 3 follower list events. Other clients would drop these

selections when updating user follows.

Some clients started adding muted words to kind 10000 mute lists, in addition

to muted pubkeys. Clients that weren't expecting this ended up dropping

muted words when updating muted pubkeys.

Similarly, some clients began adding private mutes to kind 100000 mute lists by

JSON-encoding the tags, encrypting the result, and placing it in the event's

content field. This resulted in mutes being ignored or overwritten on update.

https://github.com/nostr-protocol/nips/blob/master/01.md

Building Nostr

26

In every case, these bugs are a result of poor design — overloading a single kind for

multiple purposes is always a recipe for disaster. But in cases where poor designs

become conventional, it can be helpful to handle events in such a way that

unanticipated data doesn't get dropped.

One way I've found to do this is to write parsers for an event in order to turn it into a

standard data structure that can be used elsewhere in my application with the

original event attached. Then, when saving a new version of the event, I update the

event directly, keeping tags and content intact as much as possible before re-

publishing. Here's an example:

readProfile = e => {...decodeJson(e.content), e}
writeProfile = ({e, ...p}) => {kind: 0, content: encodeJson(p), tags:
e.tags}

You can see that the original event is passed through to writeProfile, allowing us to

avoid dropping any tags that may have been included.

This adds a certain amount of additional effort to implementations, but is important

for avoiding disruption of user experience.

Backwards Compatibility

Backwards incompatibility is one of the big problems of spec design. When breaking

backwards compatibility, not only do you break other existing implementations, but

in a system where events can't be migrated to the new format you also break all

historical data, even if it was published by your own app.

At the same time, breaking backwards compatibility can free you up to improve the

protocol in important ways. In many cases, it also won't have much of an impact.

Supporting historical data is important for some applications, like archival services,

but many applications have a strong recency bias such that they don't necessarily

mind throwing away old data.

I think there's a balance to this. I don't think we can be backwards compatibility

maximalists, but we also shouldn't be careless about throwing away old formats for

no reason. There is a perverse impulse among software developers to refactor for

dumb reasons which should absolutely be avoided.

Building Nostr

27

When introducing new backwards-compatible functionality to Nostr, it's usually best

to enhance existing data formats as long as it doesn't result in overloading a single

kind with multiple use cases.

When breaking backwards compatibility however, it's best to create an entirely new

kind and evangelize for migrating to it. This is much harder than modifying the

behavior of existing event kinds, but it's far more polite. The downside is it breaks

network effects - and can still result in a poor UX for clients that don't adopt the new

format if it results in missing content.

Over time, Nostr protocol development has gotten increasingly conservative. As use

cases proliferate, it becomes more difficult to get feedback on new data formats. As

implementations proliferate, it becomes more difficult to advocate for breaking

changes. Nostr specifications are not sacred, but their effectiveness relies almost

entirely on interoperability. Maintaining compatibility requires conscientiousness,

communication, and contributions to other projects - there's no better way to get

people to listen to you than writing code to improve their implementation.

Building Nostr

28

3. Signatures and Identity

Now that we've gotten some of the boring stuff out of the way, we can get into some

of the meat of what makes Nostr special. While Nostr makes things marginally more

exciting by virtue of its design choices, data modeling is common to pretty much

every form of software. What isn't as commonplace is Nostr's use of cryptography.

Nostr is built on the same elliptic curve that Bitcoin is built on: secp256k1.

Asymmetric cryptography enables all kinds of neat things from digital signatures, to

encryption, to secret sharing, and even distributed signature schemes. This chapter

isn't a complete catalog of what we might be able to accomplish with it, but will

instead focus on how Nostr uses it and why it matters.

Information Wants to Be Free

Digital signatures are essential to making Nostr work. The goal of Nostr is to break

down walled gardens by subverting one of their key value propositions: content

authentication. Or, in other words, the ability to know that a particular person said a

particular thing.

This is a challenge in the digital world because information can be copied or

fabricated at will. Simply saying that someone authored a particular piece of content

doesn't make it so. When you go to Twitter and you load up a tweet, you only know

that tweet is real because you trust Twitter. And if someone takes a screenshot of

that or copies the text and emails it to you, then you have even less assurance that

what's been presented to you is authentic.

What this means is that data that is not cryptographically signed is tightly coupled to

custody. The only person who can reliably attest to the authenticity of a given piece

of information is the person who can trace its provenance from the author, through

storage, and to your device. This is very convenient for social media platforms —

reliance on unsigned data means that they are needed. There has to be a single

trustworthy custodian in order for unsigned data to work. The same is true of search

results on Google; you don't know that search results are any good unless Google

says they are.

What signed data gives us is the ability to know that something is true without having

to trust anyone. If I create a note on Nostr and use my private key to sign it, anyone

Building Nostr

29

can verify the signature using the hash of the event and my public key (which is

attached to the event). This lets them know that the event was created by the person

who has access to my private key, i.e., me.

A Nostr event can thus be sent over an untrusted communication channel without

the recipient losing the ability to know that it was me who signed it. As long as they

know my public key, I can email a Nostr event, I can send a Nostr event over a peer-

to-peer communication or over Bluetooth or over the LAN, or I can print it up and

send it by mail. No intermediary can stop me without securing a monopoly on my

communication.

Publicity Technology

The business model that fuels today's social media platforms is predicated on the

capture of user data for their exclusive monetization. The user has become the

product. Our data is used in a focused way to create targeted advertisements, or in

the aggregate to understand and anticipate user behavior.

Signed data solves only half of this problem — it actually worsens the problem to the

extent that data is public and accessible to anyone who wants to analyze it for

patterns. Designing digital identity also has an incredible amount of complexity

involved, and must be approached with caution. From Philip Sheldrake's essay,

Human identity: the number one challenge in computer science:

Put starkly, many millions of people have been excluded, persecuted, and murdered

with the assistance of prior identity architectures, and no other facet of information

technology smashes into the human condition in quite the same way as digital

identity[...] This should give anyone involved in digital identity cause to consider the

emergent (i.e. unplanned) consequences of their work.

When designing systems that make use of digital identity, it's important to work from

a conception of identity not as objective, but as subjective — that is, defined not by a

set of static attributes, but by the dialectical contexts and relationships the person

behind the identity participates in. The former kind of identity allows others to act
upon the identity; the latter allows the person who own the identity to act.

Cryptographic identity doesn't automatically make this distinction, but can be used

in either way. If the goal is user empowerment, a system of identity that is crafted to

protect the digital freedoms of the user must be carefully designed.

https://generative-identity.org/human-identity-the-number-one-challenge-in-computer-science/

Building Nostr

30

Because identity is intended to be shared in a social setting, Nostr is not really

"privacy technology". Rather, Nostr is "publicity technology".

When you create an event and you send it to untrusted custodians (particularly if left

unprotected by access controls or encryption) you are advertising something about

yourself to the entire world. All the data included in an event and all the metadata

that can be harvested by observers and middlemen points back to you.

This is suitable for Twitter-like use cases (although user privacy is a concern even in a

broadcast social media context), but always has to be considered when building

products on Nostr. For users, it's best to use a VPN and Tor in combination with

Nostr if you're concerned about privacy. Even so, in the aggregate signed data can

still be collected and used to understand both individual users and entire social

clusters.

Dis-intermediating Data

With that in mind, signed data does help reduce the capture of user attention by dis-

intermediating content delivery. The current business model of social media

platforms is predicated on the attention users give the platform, which is maximized

by designs which stimulate "engagement", the creation and consumption of digital

content.

The old way of doing this was through centralized content production. A business

would create content — for example, movies, magazines, or podcasts — and present it

to users for their consumption. Of course, it was a lot easier to directly monetize this

content because it was both high quality and protected by intellectual property laws.

On social media, content is not produced by the platform, but by users. This

introduces a second side to engagement — users not only consume, but also produce

content. This keeps them even more engaged, and provides even more information

about them to the platform.

When content is signed, it can no longer be captured by the platform (even if it is still

visible to the platform). The result is that platforms lose the ability to enforce their

monopoly on user attention. As a result of signed data, user attention can be diverted

to other platforms that host a copy of the data. Nostr takes this effect even further

by decoupling data storage and user interaction — relays store notes, but clients

mediate user interactions.

Building Nostr

31

On Nostr, clients can be more aligned with users, since they can only capture user

attention to the extent that their functionality is what's valuable to the user, not the

data they have access to.

The ability users have on an open network to leave a platform without losing all their

data or their social graph is called credible exit. This is the opposite of "vendor lock-

in", which occurs when platforms make it difficult to leave them. The export features

social platforms offer are nearly useless because they break all the links in your social

graph. But if all your social data was signed and the social graph was open, it would be

quite easy to leave.

Social media companies can still exist in a world of signed data, but they will have to

offer a real value proposition to their users in order to retain them. This means that

they'll be more likely to serve their users rather than extract as much value as

possible from them.

Whether open source software wins out or for-profit companies start building on

Nostr, signed data weakens platforms' hold on their users and realigns the interests

of social media platforms with those of their users. And while I think there's still room

for skepticism about the effects of social media in general on people and

communities, removing lock-in fixes a lot of existing perverse incentives in the

system.

Your Very Own Number

On almost every digital platform in existence, identities are the property of the

platform, not of the user. In most cases, a user identity is not actually the user's email,

phone number, or a username, but an ID that's stored in a database. This number is

generated by the platform when a user registers, and belongs to the platform, which

can change this number, redefine it, give it away, or delete it at any time and with

impunity.

The internet of today is entirely occupied by renters. Users move from one website

or app to another, asking the owner of that digital estate if they can please check

their messages, post a meme, express an opinion, or buy something. Users have next

to no leverage to force their way in to the vault that holds their data. Content

creators are frequently de-platformed. Community groups are banned. Even

websites are frequently taken down.

Even worse, when a website integrates social sign-on (to make life easier for the user

https://newsletter.squishy.computer/p/credible-exit

Building Nostr

32

of course), not only does the identity provider get the ability to track your

movements across the internet, but they also get the ability to revoke your access to

these third party services! Even if you don't use social sign on, your email provider

probably has the same ability to revoke your access from the rest of the internet. This

over-reliance on identity providers leaves users extremely dependent and

vulnerable.

An "account" is simply an entry in a database that associates some asset with a

person or an entity. The user is the entity, and the custodian holds the asset.

Whether you're signing in to Netflix, sharing your PPI with your bank teller, or

swiping your keycard to get into work, the credentials you present are issued to you

by the service or an authority they trust (yes, even your birth date, which is only

meaningful because it's printed on your ID).

Cryptographic identity turns this on its head, because instead of being granted an

identity by a platform, you provide your own user ID. And because you don't have to

tell anyone your private key in order to prove you own it (in contrast with, say, social

security numbers), you have exclusive access to your identity.

Secret keys can also be generated out of thin air, giving you as many identities as you

need. This allows you to re-use an identity as much or as little as you need, depending

on whether you're looking for privacy or convenience in any given case. For example,

using the same key for your social media profile as well as for your wallet makes it

easy to pay friends — but might also link your payment history to your public

persona.

This of course requires users to be responsible and understand the privacy trade-offs

of reusing their keys, just like it requires users to know not to reuse their passwords.

But user education is a tractable problem, while digital freedom is impossible without

cryptographic identities. Users can be exclusively and finally in control of their

identity.

Agency and Identity

Cryptographic identities attack walled gardens from multiple directions at once.

Because data is signed and verifiable, platforms are no longer necessary for tracing

the provenance of a given message or social media post.

The flip side of this is that platforms are no longer able to act on behalf of their users

with impunity. If data is expected to be signed and users hold their own keys, user

Building Nostr

33

activity can no longer be forged. This is important in cases where action is required in

order to de-platform someone — bank accounts can be frozen, but bitcoin wallets are

held in alodium.

Cryptographic identities are harder to steal than claims that are shared with

custodians. When you sign in with a username and password, that goes into a

database that may be the target of leaks or hacks. If it's valuable, this data almost

always ends up on the dark web.

In contrast, when using asymmetric key pairs the only thing that can leak from the

third party database is your public key, since your private key never leaves your

possession. Of course there's a whole art to keeping your private key safe, which

we'll get into later. But even without sophisticated key management, cryptographic

identities drastically decrease users' vulnerability to identity theft and phishing

attacks.

Identity Webs

Identity a la carte is not the end of the story though. Cryptographic identities can

free data from custodians, but they can also be referenced by that data, making it

possible to assign meaning to identities themselves. A simple example of this is a

"mention", which allows someone to be notified about a conversation and engage

with it. The same goes for direct messages, payments, friends, follows, and more.

Since each reference of a public key is also signed, relationships between keys can

begin to form. This is known informally as "webs of trust", although the word "trust"

might overstate how reliable these connections are. A better term might be "identity

webs".

The semantics of connections between identities may be more or less explicit (a

social media "follow" is a pretty well-defined concept, while a comment on a blog

post carries far less meaning), but every connection has significance. In the

aggregate, the same types of analysis that threaten user privacy (as mentioned

above) can be leveraged to benefit users who voluntarily produce content for public

consumption.

Whether through simplistic analysis of follow graphs or sophisticated analysis that

scores transitive relationships or different types of interactions, reputation can be

assigned to identities. We often think of "reputation" in objective terms, but in reality

it's entirely relative to the values and network of the person assessing reputation.

Building Nostr

34

In concrete terms, if you follow someone you're expressing a non-zero amount of

"trust" in that person. It doesn't mean that you endorse their views or that you would

trust them to watch your kids, but it does indicate that they're of interest to you in

some way. Other people can then borrow this attestation to augment their own

ability to assess reputations, expanding their ability to traverse the network.

However, with each connection the ability to assess reputation diminishes since trust

is increasingly delegated.

For this reason, reputation has to be calculated from a trusted starting point and only

via trusted connections, or else it becomes subject to sybil attack. If reputations are

not calculated conservatively, it can become trivially easy for sock-puppet accounts

to infiltrate a network. In other words, if you calculate reputation starting from the

perspective of a scammer, you're going to have scammy scores. Likewise, if you over-

weight weak attestations (for example, ambiguous emoji reactions), it's unlikely

you're going to get good results. Garbage in, garbage out.

This conservatism naturally results in network partitioning, in which someone from

one social cluster might find it difficult to establish the reputation of someone in a

different social cluster. There are "global" algorithms like PageRank (named after

Google's Larry Page) which attempt to circumvent this constraint, but are inherently

vulnerable to sybil attack.

One solution to this problem that is frequently proposed is to supplement implicit or

weak attestations with more explicit, annotated attestations. Instead of using a

single number which "scores" the subject, multiple scores might be calculated along

any number of axes. For example, instead of "I follow this person", you might want to

indicate "I trust this person to recommend movies."

This approach can work in certain contexts like reviews for products or services. But

in most cases, getting users to publish such explicit attestations is difficult to

incentivize. A good example of this is PGP which, despite the enthusiasm nerds have

for building trust graphs, has failed to be widely adopted by non-technical users. The

reason for this is that the creation of these attestations has no immediate utility —

they are entirely instrumental, requiring up-front investment in order to achieve

their purpose. In contrast, follows, likes, and replies all have their own immediate,

intuitive incentive.

For this reason, webs of trust will always be more or less implicit, and rely on careful

and qualified data analysis. Just because someone is good at recommending recipies

does not mean you should trust their political opinions. This is especially true when

Building Nostr

35

differentiating between different trust contexts. Trust derived from follow graphs

may be very useful for identifying spam or impersonation, but might not be useful for

assessing whether someone is safe to meet in a dark alley.

Digital representation of social trust is inherently weaker than authentic social trust,

because it is predicated only on the subset of information that can be collected.

Major factors in assessing trust in real life (such as physical appearance, credit score,

or criminal record) might be entirely absent in a digital setting. This is especially true

for new users who don't yet have any attestations from other users about the

authenticity or value of their activity.

However, there are additional affordances that Nostr provides which can

supplement the trust graph. Synthetic attestations can be generated on behalf of

new users by services with an established reputation by reviewing government-

issued identification (or by asking for a picture of the person with a shoe on their

head). Another method is "proof-of-work", originally invented to frustrate email

spam. NIP 13 specifies how a given event can demonstrate that a certain amount of

computational work went into its creation. Both of these methods have their

limitations (identity theft, AI-generated imagery, and GPU farms can all bypass these

measures if the incentive is valuable enough), but they can factor into a more robust

trust profile.

Holding Keys

Cryptographic identity promises a lot, but all of its benefits are predicated on users

being able to securely and conveniently hold their private key, which is a big

assumption. Over a decade of research has gone into building key storage solutions

for Bitcoin wallets. Many of the the complexities and trade-offs involved in those

design decisions apply to Nostr as well.

The stakes are slightly different though. If you lose your Bitcoin keys you can lose

real money; if you lose your Nostr keys you can lose your social identity. Which one is

worse depends entirely on who you are, but both have the potential to be

catastrophic.

Nostr also has some disadvantages in comparison with Bitcoin. With Bitcoin you can

rotate keys by simply sending funds to a new address and throwing away the old

address (although if you lose your key entirely you're still out of luck). On Nostr, your

identity is your public key, and therefore much harder to move away from. While

nothing prevents copying and re-signing all your social media data with your new

https://github.com/nostr-protocol/nips/blob/master/13.md

Building Nostr

36

key, all references to your cryptographic identity would be broken — and along with

them your entire reputation.

Key rotation is something that we have to figure out if Nostr is going to succeed in

the long term. There have been some proposals, but none of them have gained

enough traction to be implemented. Key rotation is an inherently difficult problem,

because you need to borrow the reputation of the old key in order to validate the

new key in such a way that an attacker wouldn't be able to do the same thing.

Decentralized identifiers (DIDs) are not really a solution because they result either in

a circular system of keys or dependence upon a trusted name registrar. Hierarchical

keys have the same problem; the root key still has to be competently secured.

There are some things we can do though to make key storage safer and more

convenient.

A number of different signer protocols exist as alternatives to pasting your private

key into every Nostr client you try, including browser extensions, Android intent-

based signers, and remote "bunker" signers.

The last of these is, in my opinion, the most promising. Remote signers can run on any

device connected to the internet, and used in any type of application. Browser

extension or Android signers can be useful as progressive enhancement, but should

always be considered secondary to remote signers.

The difficulty with any of these solutions is that they require new users to learn

about and set up an additional component when getting started with Nostr, which is

an awful UX from an onboarding perspective. One possible solution to this is for

every client to include a remote signer implementation so that users can log into

other clients remotely. But this is a lot of complexity to impose on client

implementations, and is very difficult to execute successfully.

The most promising solution to the onboarding problem is "multisig" bunkers, which

allow for multiple unrelated custodians to coordinate when signing events by

breaking the user's private key up into "shards". A scheme like "2 of 3" would require

that two custodians collude in order to act on behalf of the user.

But even better in the context of onboarding would be to use a "2 of 2" signature

scheme, where half of the key is held by a custodian, and half of the key is held by the

client onboarding the new user. This means that unless the client and the custodian

collude, the user's key remains under their control. Given the likelihood of non-

technical users failing to secure their keys, this can be a viable alternative to self

https://github.com/nostr-protocol/nips/blob/master/07.md
https://github.com/nostr-protocol/nips/blob/master/55.md
https://github.com/nostr-protocol/nips/blob/master/55.md
https://github.com/nostr-protocol/nips/blob/master/46.md

Building Nostr

37

custody for certain people.

This approach can be improved further by sending an email to the new user with a

version of their private key encrypted with a password as a backup. This helps defer

the learning process for key management until the user has developed a reputation

on the network, making the key valuable. When they're ready to take custody of

their key, they'll have it sitting in their email inbox.

One other common pattern worth mentioning is seed words. Seed words are great

for securing Bitcoin in cold storage because cold storage ideally requires manual

entry onto a physical medium or air-gapped device. A 64-character hex key is going

to be a lot harder to write down correctly than 12 or 24 words, especially if you're

engraving the characters on steel.

But on Nostr keys are almost always stored on an internet-connected signing device,

making them vulnerable in ways bitcoin keys aren't. Seed words only useful for

physically backing up Nostr keys that exist only as distributed shards. This can make

sense for advanced or paranoid users, but is not really relevant to onboarding new

users. In most cases, putting your key in a password manager (optionally encrypted)

is enough.

Naming Keys

Using a public key as your identity is a huge improvement over the status quo, but it

does come with the important trade-off of how names are associated with keys.

Zooko's Triangle asserts the difficulty of creating a name that is human-meaningful,

secure, and decentralized.

Nostr public keys are secure and decentralized, but not human-meaningful. A

complete solution to this problem is possible, but prohibitively expensive — for

example, names could be associated with keys via a blockchain, but that would

introduce a hard dependency of the naming system.

Nostr opts, instead to combine several more lightweight systems — none of which

fully solve the naming problem, but which together make cryptographic identities as
a whole meaningful to humans.

First, users can simply name themselves by publishing a kind 0 profile. This name

isn't unique to that user, it's only a self-designation. On its own, this allows attackers

to impersonate anyone simply by replicating their profile data (and, if they want to go

https://github.com/nostr-protocol/nips/blob/master/49.md
https://en.wikipedia.org/wiki/Zooko%27s_triangle

Building Nostr

38

all-out, their social media posts, follows, list, etc).

For this reason, when displaying information user identities, it's imperative to qualify

that information by validating the user's claims. Simply displaying the user's public

key, or a color derived from it are not sufficient, because that data is not meaningful

to humans (especially if they have never seen it before) — opaque data does not help

qualify human-readable data.

The best solution to this is, again, identity webs. Identities can only be validated as

authentic by sybil-resistant attestations not under the identity's own control. Follow

graphs, emanating from the user's own identity are a great way to handle this (at

least, in principle — this can still be attacked if a well-known user's key is stolen and

their followers are co-opted to validate an impersonator instead).

One mistake that is worth mentioning here is the use of NIP 05 addresses for

verifying users, because addresses themselves can be verified as belonging to a given

user. But just like domain names, addresses are not self-validating. Is google.org

owned by Google? You don't know. In the same way, is chris@nostrplebs.com or

chris@primal.net the correct address? Addresses are only useful for finding users,

not for validating their authenticity.

The basis of identity in a decentralized system has to be cryptographic identity and

the relationships established between them.

https://github.com/nostr-protocol/nips/blob/master/05.md
mailto:chris@nostrplebs.com
mailto:chris@primal.net

Building Nostr

39

4. Relays are Repositories

Thus far we've focused mostly on "Nostr as data." But data modeling, signatures, and

identity are really only half of the story. Nostr is much more than a data format —

what is much more interesting is its network architecture.

Why WebSockets

Many cutting-edge decentralized protocols are "peer-to-peer," which means they

attempt to repurpose the architecture of the internet to facilitate direct

communication between peers. Peer-to-peer technology is really neat, but it's also

hard to get right because it works against the grain of the internet as it has been used

for the last 30 years.

That's not to say P2P technologies are of no use. Mesh network systems and P2P

communication techniques can be great when used as fallbacks from more

traditional infrastructure and networking technologies. But just like it would be very

hard or impossible to completely replace the hub-and-spoke architecture of the

internet with a mesh network, P2P systems are not a complete replacement for the

client-server model.

Nostr attempts to get many of the benefits of P2P-style architectures without a lot of

the hassle by using a pretty boring piece of web technology: WebSocket servers.

WebSocket servers have all the same problems that regular servers have in terms of

being gate-kept by internet service providers, since normally they rely on TLS root

certificates, ISPs, and DNS registrars. Domain name resolution can be bypassed, but

then users have to deal with IP addresses. TLS can be bypassed, but then

implementations have to run things through Tor, which has its own trade-offs.

Most nostr relays use TLS with conventional domain names. And in true Nostr

fashion, this is good enough™. Because anyone can buy a domain name and spin up a

server, there are hundreds of relays out there that can be used for storing signed

data. If relay operators or users want to up the ante (for example if the country they

live in man-in-the-middle attacks TLS), they can always resort to more advanced

techniques. And if a particular relay goes offline, it's only one of many redundant

nodes.

In "Simple Made Easy," Rich Hickey defines the distinction between easy and simple.

https://en.wikipedia.org/wiki/Kazakhstan_man-in-the-middle_attack

Building Nostr

40

"Easy" means something is "close at hand". Something that's easy may not be the best

solution, but it's accessible. "Simple" means that something does one thing well

without being complicated by different concerns. In technical terms, relays are not

really simple. Relays are easy. Relays use WebSockets which are a layer on top of

HTTP which is a layer on top of TCP/IP, which is itself a fairly complicated protocol.

The trade-off here is that the technology, again, is not ideal, but good enough.

WebSocket servers also allow for duplex communication rather than request-

response, which allows servers to push new information to the client as soon as they

receive it.

But using WebSockets doesn't preclude the use of other transport protocols to send

events between peers.

As an aside, I'm not talking about Nostr over HTTP. HTTP, while simple and more

familiar for developers who are used to working with web technologies, is strictly

worse than using WebSockets because HTTP doesn't allow duplex communication,

increases latency through polling (or requiring support for server-sent-events), and

makes clients and relays less efficient. If you're going to rely on the web stack, just

use WebSockets.

What I mean rather is alternative transport protocols that have a different

simplicity/ease trade-off balance from WebSockets. In theory you could come up

with a binary encoding of Nostr events and send them over QUIC, which would

eliminate a lot of the overhead associated with WebSockets. This might be useful for

high performance applications and servers.

Alternatively, you might put a bunch of Nostr events in a JSONL file and torrent it.

These events would then be replicated on a different decentralized network and

could be downloaded by a client supporting that transport, improving censorship

resistance (assuming the dataset is valuable enough for people to seed it).

Another example would be to use P2P technologies as progressive enhancement. In

other words, you could enhance the connectivity of Nostr applications in certain

scenarios without breaking the base protocol. This might be a useful when designing

a mobile application for people in rural areas with little network coverage. If the

network isn't available, devices would fall back to direct connection over Bluetooth

or WiFi Direct.

This technique was pioneered by Secure Scuttlebutt (SSB), which started with P2P

technologies and then added pubs as a way of bridging devices that weren't directly

https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events/Using_server-sent_events
https://github.com/nostr-protocol/nips/pull/1979

Building Nostr

41

connected. Nostr simply reverses this model and makes pubs the primary means of

communication and optionally adds P2P when required. Of course, these alternative

transport protocols have by and large not been specified or implemented, but there's

nothing to keep us from creating them.

In terms of transport protocol, Nostr opted for "easy" by default. But this dimension

of the relay network is secondary to the network architecture itself, which adheres

much more closely to Hickey's idea of "simplicity". So, setting aside the transport

questions for now, let's get into what relays actually do.

Multi-Master

A key aspect of Nostr's architecture is its reliance on more than one relay for storing

data. As we mentioned in the previous chapter, relays can't falsify anything because

your data is signed. They don't have the ability to lock users in or create a data moat.

What they do have, however, is the ability to censor or delete user data.

If you use only a single relay, that relay has complete control over which of your

signed events get rebroadcast to other people. It may even selectively censor data

depending on who's asking for it or what you're publishing. Adding an additional

relay decreases your vulnerability to censorship in a straight-forward way. If, say,

you have a 10% chance, all things being equal, of being de-platformed by a single

relay, publishing to two relays gives you a 1% chance; three relays gives you a 0.1%

chance. Beyond that, if you're particularly sensitive to the risk of de-platforming,

your best option is probably to self-host or select relays you can explicitly trust to

host your content.

The fallacy that "more is better" is evident with relay operators — many people run a

relay just so they can "run a node". But (to borrow a term from Bitcoin), you have to

have "an economical node". In other words, people have to use it — and you have to

keep it running.

For the average social media user, three to five popular relays is generally enough. As

long as the relays provide a good mix of different admins, jurisdictions, and policies,

you're very unlikely to lose all your hosts at once. Even if you do, you still have your

key! Just keep a periodic backup of your content and re-broadcast it when you find

more trustworthy hosts.

This ignores the problem of which relays should be used to store what content.

Solving this problem is the key to making Nostr's multi-master architecture work;

Building Nostr

42

naïve replicas result in either excessive duplication of content across all relays, or

persistent failure to locate content. We'll get to that soon, but first I want to define

what a relay actually is.

Functional Relays

Relays are simple repositories of events. They hold a bunch of events in some

database or other and grant access to those events using the Nostr WebSocket

protocol. This protocol involves sending JSON-encoded messages over WebSockets

using just a few core commands:

Clients can send an EVENT message in order to publish an event to a relay

Relays respond to client EVENT messages with an OK message, which includes

whether the event was accepted or rejected and an human-readable message

with details

On the read side, clients can send a REQ with a subscription ID and a filter

Relays can respond by sending one or more EVENT messages, each of which

contains an event

There are a few other control messages, including CLOSE, which allows a client to

close a REQ; CLOSED, which allows a relay to close a REQ, and EOSE, which allows relays

to let clients know when they've sent all events initially matched by a REQ (the relay

might continue to stream matching events as it receives them).

There are some other details which we'll get to below, but this is pretty much it! A

relay is just a bucket that you put events into. Later, you or someone else might take

them out again.

Some additional commands have been proposed, and in some cases added to the

protocol, but to the extent that they stray outside of this basic repository paradigm

they only complicate things for little or no benefit. One example is COUNT, which

might seem useful at first until you consider that in order to count events in a

decentralized network you need a way to reconcile those events between multiple

servers. COUNT doesn't do that, making it useful only when working with a single

relay.

For the sake of decentralization, it's my opinion that the relay interfaces should be

minimal in order to reduce implementation burden and maximize interoperability.

That said, there is one additional responsibility that relays can't really delegate:

Building Nostr

43

access control. Access control on Nostr is implemented by the AUTH verb. When a

relay wants to know who opened a connection, it issues an AUTH message with a

challenge string. The client then incorporates this challenge string into a kind 22242
event, signs it, and sends it back to the relay.

From this point on, the relay can implement any policy it wants on the basis of the

user's cryptographic identity by rejecting published events, refusing to serve

requests, or selectively filtering data before returning it to the client.

This is useful for two distinct things: content curation and access control. Many

relays have policies about what kind of content is allowed on their relay, whether

based on content analysis, social graph analysis, proof of work, or when an event was

published. Much of this data is already available on any event that gets published to a

relay, but the identity of the person publishing an event can also be an important way

to vet content cross-posted from elsewhere on the network, or if the user is paying to

store content on the relay.

Access control is similar to, but distinct from, content curation. Relays may or may

not care what events in particular they store, but they may want to allow access only

to particular users. This can be useful for community relays, relays that handle direct

messages, or relays that proxy content on behalf of paid subscribers. Likewise, relays

may allow anyone to request events, but be very selective of what content is actually

stored.

These policies together make relays less fungible — which is, counter-intuitively, a

good thing. Some large hubs accept everything except for obvious spam, and are

therefore mostly interchangeable — there's no reason to establish a relationship with

one rather than the other. Other relays implement custom policies for protecting

community content or direct messages, which make them more appropriate for

certain use cases. Another example would be relays which return an algorithmic

selection of notes from across the network, making social media "algorithms"

possible.

This is an important point — to the extent that relays are treated as commodities

they also have to be either subsidized by businesses operating on nostr, or run pro
bono. Relays that don't have a distinctive value proposition don't have a business

model. This presents the danger of leading us back into the surveillance capitalism of

the existing internet. Presenting relays to the end user as distinct services providers

forces users to consider who they do business with and why, creating affordances for

direct monetization and alignment of incentives that wouldn't exist if relays were

Building Nostr

44

abstracted away.

One final thing to note in this context is Negentropy, a set-based reconciliation

protocol used for efficiently syncing events between two relays (or between a client

and a relay). This allows a client to request only events it doesn't yet have,

significantly reducing bandwidth requirements.

This does a lot to facilitate content replication across relays without burning through

resources, which in turn makes it possible for the network to re-organize itself to

align with expectations about where a given event "should" be stored.

Replication and Routing

The Nostr network is highly partition tolerant, unlike (for example) Secure

Scuttlebutt, which links all events from a single key together, making it impossible to

download a single event without downloading all events that came before it. On

Nostr, you can download any dataset you want, because events aren't tied together.

The cost of this is that you never know if you have all the events; the benefit is that

content can be replicated more selectively across the network.

This is actually how Twitter's architecture works too — in order to scale, they

maintain a network of interrelated caching nodes. When the average user posts

content it normally gets sent immediately to read caches for all of their followers. But

when a very popular account posts content, it's replicated to special "famous person"

caches, distributing load without excessive duplication. Their system is also

overprovisioned and able to respond to dynamic load, since news events may happen

without warning.

This is of course an over-simplified view of Twitter's architecture, but you can see

how nostr relays might correspond to cache nodes. If Nostr is to scale, it will naturally

adopt a similar architecture. This requires not only the availability of enough nodes

to support the network, but (arguably more importantly) heuristics for which relay to

ask for a given event.

In the past, naïve content replication has been used to solve the routing problem.

Instead of developing methods for relay selection, all content was sent to every relay.

One project in particular called Blastr encouraged people to publish their events to

special write-proxy relays, which would then re-publish it to hundreds of other

relays.

https://github.com/nostr-protocol/nips/blob/master/77.md
https://blog.x.com/engineering/en_us/topics/infrastructure/2017/the-infrastructure-behind-twitter-scale

Building Nostr

45

This not only makes these relays a chokepoint for new content, but is also

increasingly expensive as the amount of content being published to the network

grows. With aggressive content replication, hundreds of duplicates of each event are

foisted upon relays that may have no interest in storing them.

This is not horizontal scaling; it's redundant vertical scaling. If every relay has to hold

every event, small relays become impossible, centralizing the network in a few mega-

relays which can afford to store and serve everything. This isn't really economical at

any scale, but is outright prohibitive when databases reach a billion plus events.

Aggressive replication is a brute force solution to the problem. In theory it would

allow clients to ask any relay for any event, providing a 100% query hit rate. In reality

though, this would actually destroy the network.

The alternative to brute forcing through content replication is intelligent relay

selection. In order for decentralization to work, clients have to be responsible to

"route" events and requests for events to the correct custodian in a way that is

predictable. In this sense, redundancy is only relevant for degenerate cases, where

the correct custodian fails to store the events it is responsible for. Routing heuristics

are a form of interoperability that doesn't have to do with data modeling, but with

network organization.

In order to solve this problem, we must have rules for:

Where to send a given event

Where to send a given filter

In the latter case there is less information available for solving the routing problem,

which means multiple heuristics might be relevant for a given event, depending on

how it might be queried.

The Outbox Model And Friends

This is where the "Outbox Model" comes in. The Outbox model combines

cryptographic identity with selective content replication, and was the first heuristic

defined for solving the routing problem, but is certainly not the only one — other

heuristics have emerged over time as the same problem cropped up in different

contexts.

At the end of this section, I'll enumerate a few other relay selection scenarios and

Building Nostr

46

their accompanying heuristics. For now, I want to focus in some detail on the Outbox

in particular, since understanding it is crucial for keeping Nostr decentralized, and

the heuristics it defines are paradigmatic for the rest.

In the early days, Nostr was used primarily for microblogging (and to a large extent

still is), and so NIP 65 was created in order to solve this problem in that specific
context. NIP 65 allows users to publish a kind 10002 "relay selections" event "to

advertise relays where the user generally writes to".

By publishing their relay selections, users are declaring to the rest of the network

that events they create for public consumption can be found there. This covers things

like blog posts, microblogging events, and user profiles.

So, in order to find a given user's blog posts (for example), I first have to look up their

10002 event (we'll cover how this happens in a bit), find the user's "write" relays in

that list, then ask those relays for blog posts by the target user.

This is a very simple heuristic on its own, but it's important to be clear that it is not

sufficient for every use case. The term "outbox model" is often used as a way to refer

to the general idea of heuristics for relay selection, but in fact the outbox model is

only one such heuristic, and is relevant only in the particular (though very common)

context of author-based retrieval of public social media content.

The outbox heuristic is not sufficient to solve the routing problem in general for two

reasons. First, there are many notes that should not be posted to user outboxes - for

example, a kind 22242 auth response, or a chat message posted to a NIP 29 group.

Second, any event may be retrieved based on criteria other than event author.

A second heuristic, also defined by NIP 65 is the "inbox model", which is intended to

make social media posts discoverable based on users @-mentioned in the event. This

heuristic is distinct from, but complementary to, the outbox heuristic.

For example, a note by Alice which mentions Bob should be posted both to Alice's

outbox relays, as well as to Bob's inbox relays. To retrieve Alices's replies, we would

use the outbox heuristic based on her kind 10002 event — but if we want to retrieve

Bob's mentions, we would use the inbox heuristic based on his kind 10002 event.

Similarly, when posting to a NIP 72 community, you may or may not choose to also

post an event to inbox or outbox relays, depending on how private you want the

event to be. But in addition, it's important to post events to the locations defined by

the group definition's relays tag. The reason for this is simple: when fetching a list of

https://github.com/nostr-protocol/nips/blob/master/65.md
https://github.com/nostr-protocol/nips/blob/master/29.md
https://github.com/nostr-protocol/nips/blob/master/65.md
https://github.com/nostr-protocol/nips/blob/master/72.md

Building Nostr

47

community posts, searching the outboxes of all the members of the community may

not be feasible.

Posting to certain relays based on all applicable heuristics can be thought of as

equivalent to creating multiple indexes on a database table, each to support a

different query scenario. An index connects a query condition which supports a

particular use case with where on disk matching records are stored. In the same way,

a routing heuristic connects a filter that might be constructed to support a particular

use case with the relay where matching events are stored.

Just like database indexes, relay selection heuristics are generally additive, and

should all be applied when relevant so that the event in question can be found using

the heuristic most appropriate to a given context. The exception to this is when some

form of access control is desired — i.e., that the event not be discoverable using a

particular heuristic.

An example of this is content posted to NIP 29 groups. Because access control is part

of the purpose of the NIP 29 spec, it would be a violation of the user's intentions to

publish an event posted to a group according to the outbox heuristic — doing so

would "leak" content which was intended to be protected.

This means, of course, that the usual inbox heuristic is not available for notifying

users when they are mentioned in a group context. This might be considered a

feature or a bug depending on your perspective; this is one of the tradeoffs involved

in a system without a single arbiter governing access to content.

There are also situations where events might be available in locations not predicted

by any standard heuristic, but instead as a result of a relay's content curation policy.

You could make requests against (for example) an archival relay using any filter, and

get whatever it returns. This is an ad-hoc heuristic, defined by the relay's policy and

based on the relay's identity, not on any standard protocol feature. Relays have the

right to override any heuristic, whether using negentropy to synchronize, attracting

users to use their relay in a particular way, or by rejecting content that doesn't fit

their policies.

Needless to say, this can get very complex. This is a natural result of the openness of

the protocol and its permissionless extensibility. For publishers, the list of heuristics

available to any given event should be well-defined, either by general-purpose

heuristics like inbox and outbox, or by an additional or overriding heuristic defined

for the event's kind. On the read side, however, no implementation will have a

complete view of every heuristic that is applicable in a given situation, which means

https://github.com/nostr-protocol/nips/blob/master/29.md
https://github.com/nostr-protocol/nips/blob/master/29.md

Building Nostr

48

that there will inevitably be a certain amount of spontaneity to event discovery,

particularly when the heuristic is user- or relay-defined. It's also important to note

that applications only need to implement the heuristics relevant to use cases they

support. An exhaustive routing policy is neither possible nor necessary.

Because the routing problem is both complex and important, let me give a few more

example scenarios.

NIP 17 direct messages should be sent to the recipient's kind 10050 direct

message inbox relay. Direct messages are encrypted to only one private key,

which means each message gets sent multiple times - once to each user.

The outbox relays NIP 47 zap receipts are sent to should be those of the zap

request author, not the zap receipt author, since the wallet is only acting on

behalf of the person sending the zap. In some cases though, it might be best to

put the zap on an access controlled relay (for example, if you're zapping within

a community group).

Some events, such as NIP 72's kind 34550 group metadata events, define

which relays related events should be posted to using a relays tag.

Which relay an event is posted to depends primarily on how that event is to be read.

Events need to be discoverable, which means readers need to be able to anticipate

where the event is stored. However, there are some kinds which don't provide any of

this information to someone wishing to request them — for example, kind 37515
geocache listings, or any event with a t tag representing a social media topic.

In both cases, events belong somewhere that isn't currently well-defined by the

protocol. Currently, this is solved by asking users to manually select the relays where

they want to look for geocache listings or topics. This can be a perfectly valid

heuristic on its own, but will necessarily result either in centralization (by clients who

hard-code certain relays), or missed notes (since the ability to retrieve matching

events depends on something between randomness and brute force).

Additional signaling may be implemented to solve these problems — for example,

relays may advertise their support for certain t tags, or for geocache listings in a

given region based on g tag. In order for this to work though, heuristics have to be

defined and followed — NIPs that don't define relay selection heuristics for their use

cases are inherently flawed, since they ignore a vital part of Nostr's architecture.

https://github.com/nostr-protocol/nips/blob/master/17.md
https://github.com/nostr-protocol/nips/blob/master/47.md
https://github.com/nostr-protocol/nips/blob/master/72.md

Building Nostr

49

Bootstrapping

One event kind that I've thus far avoided introducing a heuristic for is kind 10002
relay selections. If these determine where the rest of a user's public notes live, what

determines where they belong? This is the classic bootstrapping problem of

networks, for which you need a heuristic of a different kind.

In other words, you have to start somewhere. It's impossible to access a "network"

without accessing particular nodes. When not yet connected, nodes have to be

selected by some heuristic external to the network itself.

The most common way to solve this problem is to hard-code "indexer" or "default"

relays in implementations, from which point other relays can be discovered using NIP

65, NIP 66, or relay hints. Alternatively, a distributed hash table (DHT) might be used

to store events related to relay selection, improving censorship- and sybil-resistance.

In either case, events that form the basis for relay selection heuristics need to be

stored in one of these few starting points in order to be discoverable. If they can't be

found, none of the events they help locate can be found either (except accidentally).

In practice, hard-coded lists of bootstrapping relays work pretty well for the same

reason that a small amount of redundancy in user relay selections can dramatically

reduce the risk of censorship. Because hard-coded indexer relays are selected by

implementation authors (or by users themselves), they're easy to swap out if any of

them become censorious or go offline. This is strictly worse than using a DHT, but the

strategies are not mutually exclusive. As time goes on, I expect a DHT-based solution

to the bootstrap problem to be introduced as a progressive enhancement.

One difficulty with the bootstrap relay model, however, is that different types of

bootstrapping events are needed to support different relay selection heuristics. The

outbox/inbox heuristics are defined by kind 10002, but topic-, location-, community-

, or language-based heuristics aren't, and any relay discovery events that support

them will certainly be replicated less aggressively.

One possible solution to this would be to take a step backward, and instead of relying

exclusively on kind 10002 as the entry point to the network, switch to NIP 66 kind
30166 relay discovery events for bootstrapping. However, since relay discovery

events can be published by anyone, and aren't necessarily related to the user's web

of trust, another heuristic has to be used to bootstrap trust.

https://github.com/nostr-protocol/nips/blob/master/65.md
https://github.com/nostr-protocol/nips/blob/master/65.md
https://github.com/nostr-protocol/nips/blob/master/66.md
https://github.com/nostr-protocol/nips/blob/master/66.md

Building Nostr

50

This illustrates the fact that bootstrapping is not just a physical networking problem,

but a trust problem as well. kind 3 follows is not the only way to do this, but when

choosing kind 30166 events, some heuristic has to be used to assess relay monitor

trustworthiness — otherwise, malicious monitors could sybil-attack relay

recommendations, directing users to censored or otherwise malicious relays.

Currently kind 30166 events are published exclusively by "relay monitors", but

there's no reason regular users couldn't also create them. This would make it

possible for people within a user's web of trust to recommend relays for the purpose

of discovering events by kind and optionally, indexable tags. Relays discovered this

way might be used for finding events explicitly associated with relay selection, like

kind 10002 or kind 10050 that can then be factored into other relay discovery

heuristics, or they may directly provide the content themselves (for example, relays

that curate kind 31990 application handler events).

The main problem with this is that regular users are either unlikely to be competent

to make these recommendations, or interested in taking the time since there is no

immediate incentive for them to do so. NIP 51 lists partially solve this, since they

exist primarily for user convenience, but they're neither comprehensive nor generic.

But assuming we can find a way to get users to publish these (either by solving the

incentive problem or by having clients publish them on the user's behalf based on

user activity), let me give a concrete example to illustrate what I mean.

Suppose you want to find relays that curate kind 21 video events about cats by

anyone on the network. Assuming the client has already loaded all kind 10002 relays

for the user's social graph, the client would first request relay recommendation

events from the user's network targeting cat videos:

https://github.com/nostr-protocol/nips/blob/master/51.md

Building Nostr

51

["REQ", "subid", {
 "kinds": [30166],
 "authors": ["<user's follow list>"],
 "#t": ["cats", "cat", "catstr"],
 "#k": ["21"]
}]
["EVENT", "subid", {
 "kind": 30166,
 "created_at": 1722173222,
 "content": "This relay has some really funny cat-related content on
it.",
 "tags": [
 ["r", "wss://relay.example.com/"],
 ["t", "cats"],
 ["k", "1"],
 ["k", "21"]
],
 "pubkey": "<pubkey>",
 "sig": "<signature>",
 "id": "<eventid>"
}]

Because these events are loaded from the user's social graph, there is a high level of

confidence that these recommendations are genuine (if not necessarily current or

reliable). The user's client can then request cat videos from these relays and show

them to the user. In this way, the user's social graph is leveraged indirectly for

discovering content not authored specifically by people the user follows.

Relay Hints

Something that frequently gets confused with heuristics for relay selection is relay

hints. Relay hints are baked into certain events, particularly where there isn't

sufficient information otherwise available for fetching a related event.

An example of this is kind 1111 comments, which always exist in relation to another

event. In general, it e-tags or a-tags the parent event and provides an event ID or

address. An address contains the author's pubkey, which allows for looking up the

author's outbox. But an event id tells you nothing about where to find it.

Relay hints were designed to solve this problem. By adding a relay URL to the tag

Building Nostr

52

containing the event id, the user now has at least some idea of where to look for it.

Unfortunately, for the same reason that link rot happens across the internet, these

relay URLs are not 100% reliable.

As a result, pubkey hints have been added as well. A public key is much more durable

because as long as you can find the outbox relay selection for that public key, the

user's relay selections can change, relays can go offline and come online, and there's

still a well-defined path towards discovering the event in question.

Together, relay and pubkey hints comprise an additional heuristic which can be used

as a fallback in case more reliable heuristics (like outbox) fail due to buggy

implementations or users changing relay selections without migrating their data.

Relay hints have another function though, which is to force relays to federate. If an

event including a relay hint is published to a censorious relay, the hint cannot be

removed without invalidating the event's signature. As a result, relays are forced to

decide either to reject these events entirely, or accept them and thereby advertise

someone they would otherwise choose to censor.

This make is possible for a user's events to still be discoverable across the network,

even if they are banned from a significant portion of popular relays. Clients can take

advantage of this dynamic in order to heal the network, prompting users to update

their relay selections to route around censorship.

If this all seems very abstract, take a look at

https://how-nostr-works.pages.dev/#/pathological — this page includes several

animations that illustrate how relay hints help keep the network healthy.

Properly implementing robust relay selections across the many heuristics, bootstrap

mechanisms, and relay hints is obviously complex, and could be made simpler if re-

designed from scratch. But solving this problem is essential to making Nostr

censorship resistant, and because of the many different use cases that Nostr

supports with its open data model, an unlimited number of heuristics may be

appropriate.

Content Migration

There's one more wrinkle to relay selections which needs to be addressed before

we're done here. What happens if the relays selected by a given heuristic change

over time? This most commonly happens when a user changes his outbox relays, but

https://how-nostr-works.pages.dev/#/pathological

Building Nostr

53

it can occur for any other relay selection heuristic. Normally this problem is ignored

or overlooked in implementations, but because nostr relays are not intended to be

trusted either now or perpetually, having a story for how to manage this problem is

an essential part of any complete implementation.

Luckily, the solution is actually very simple in principle. Because events are signed,

they can simply be replicated to the relays that are expected to be storing them

withouth having to do anything complex, like establish a chain of custody from one

relay to another.

In an open system like Nostr, no one can force anyone else to do the right thing,

which means that the smooth functioning of the system depends on incentive

structures. In order for an event to be discoverable, heuristics for locating it need to

be anticipated by someone. But who exactly is responsible for sending events to the

right place? The obvious answer would be the event author, but that's not actually

correct. The person responsible for putting events in the correct place is the person

who wants the event to be discoverable in that place.

This means that the onus is on users (and by extension their clients) to choose good

outbox relays and publish their events to them. Group admins are responsible for

properly configuring infrastructure to accept the correct events and make them

available. And people that curate topical data are responsible either to scrape the

network or incentivize publishing to their relays.

Similarly, it is the responsibility of anyone that changes the result of relay selection

heuristics to synchronize events to the new relay. If a user changes his inbox relay, he

should copy all events that mention him to the new location. If a group switches

relays, group messages should be copied by the admin. If a new indexer relay gets

stood up, the admin should copy relevant events from the network.

Here's a simple example of what happens if data isn't properly synchronized when

relay selections change:

Alice publishes a kind 10002 with relay A as her write relay

Alice publishes a kind 1 to relay A

Alice updates her kind 10002 with relay B as her write relay

Bob fetches her kind 10002, requests Alice's kind 1s from relay B, and finds

nothing

Bob correctly followed the outbox heuristic, but failed to find what he was looking

for. In essence, Alice lied to Bob — she published a claim that her notes were available

Building Nostr

54

on relay B, when in fact they weren't. If she had copied her kind 1 event from relay A

to relay B, however, Bob's query would have been successful.

Less important, but also worthwhile, is event eviction. When relay selection

heuristics change, stored events may become undiscoverable, and therefore a waste

of space.

This part of content migration is the responsibility of the relay operator, since they

are the only person who has any incentive to free up their resources — although

users could request eviction as a courtesy. It can also get complex, since a relay won't

necessarily have a complete view of every heuristic others are using to locate events

on their relay (for example if an event should be availble both via outbox and by

inbox, it shouldn't be evicted if only the author's outbox changes). In any case, relays

have the prerogative to delete whatever they want, so people storing data should be

careful to choose relays that are properly aligned.

Both the protocol and implementations will ultimately need to provide affordances

for migration to users.

Currently, the only way to synchronize events to a new relay is to download all

involved events and re-publish them manually, which can be fairly expensive in terms

of bandwidth. A new primitive for asking a relay to synchronize certain relays from a

peer would be a useful optimization. Similarly, there aren't currently any protocol

affordances for requesting eviction of events — neither NIP 62 nor NIP 09 quite fit

the bill.

Synchronization is also currently absent from most (or all) implementations. In the

future, clients might do this in the background on behalf of their users when relay

selections change, and community admin tools might include synchronization

affordances for community relays. Alternatively, watchtowers could be used to

actively synchrnonize data according to certain heuristics. Users might even be able

to pay these services to ensure that their content is properly available.

Relays as Transport

Earlier I defined relays as "a repository of events." This definition can be exploited to

do some interesting things not originally intended. Specifically, relays can be used to

broker transport.

A relay per se is rarely the final destination of a given event, but is rather an

https://github.com/nostr-protocol/nips/blob/master/62.md
https://github.com/nostr-protocol/nips/blob/master/09.md

Building Nostr

55

intermediary between producers and consumers. Communication via relays may be

between humans (as with social media), or relays may be used to allow different

software applications to communicate. Both use cases are defined by the event kind
that is used for payloads, and both are equally valid. This is the basis of some of

Nostr's most interesting "other stuff".

An example of this is NIP 46 Nostr Connect, which allows remote signers to monitor

a relay for signature (or encryption/decryption) requests. The signer application

holds the user's key, and the client asks the signer, via a relay and Nostr events, to do

something with the key and return the result. The details of the flow are not

important here, but because the relay is publicly addressable the client and the

signer are able to communicate.

Other examples are Nostr Wallet Connect, which allows for applications to

communicate with the user's bitcoin wallet, and any number of Data Vending

Machines (A.K.A. "DVM"s) which do arbitrary computations based on the event kind

being used. In many cases, encryption is also employed to create a secure

communication channel between parties.

Communication via relay allows anyone to set up a service identified only by a public

key rather than an IP address. This is useful for protecting service providers' privacy,

and makes running small services extremely convenient. Using this model, service

providers can be run in any internet-connected software, without dealing with the

complexity involved with NAT traversal. And of course, because relays are

interchangeable in terms of protocol, multiple relays can be used at the same time to

broker communication.

Relay as Design Pattern

Zooming out even further, relays are useful as a conceptual pattern that can be

applied in the context of other protocols. In its simplest form, a relay independent of

Nostr is just a server that implements a protocol, and which is advertised for use by

the end user on the Nostr network.

For example, Blossom servers are media storage servers that run on a protocol

distinct from Nostr, but are referred to using Nostr events. Defined in BUD 03, kind
10063 events allow Nostr users to advertise which Blossom servers they prefer to

use so that other people can find their media even if the URL embedded in a social

media post changes.

https://github.com/nostr-protocol/nips/blob/master/46.md
https://github.com/nostr-protocol/nips/blob/master/47.md
https://github.com/nostr-protocol/nips/blob/master/90.md
https://github.com/nostr-protocol/nips/blob/master/90.md
https://github.com/hzrd149/blossom/blob/master/buds/03.md

Building Nostr

56

This allows for the same kind of heuristic used for relay selection to be applied to

media servers, piggybacking on Nostr for the indexing and trust layers. And just like

events, media can be replicated across multiple Blossom servers, introducing

redundancy to media hosting.

Blossom applies the same pattern pioneered by Nostr of interchangeable protocol

servers to media storage. Another example is Cashu Mints, which speak the Cashu

protocol. This pattern is not unique to the Nostr protocol ecosystem either - Git,

ActivityPub, FTP, XMPP, and many other internet protocols also do this, but Nostr is

an exceptionally clear example of how useful this pattern is, especially in conjunction

with signed data.

Relay as Proxies

There is a different kind of relay on the nostr network, which is worth knowing about:

proxies.

In theory, proxies can be helpful — read proxies can fan requests out across the

network and de-duplicate the results, preventing users from burning bandwidth.

Similarly, write proxies can be used to fan events published by the user out to the

rest of the network.

Certain proxies exist which use a wrapper protocol to do this work — which is

important, since it allows clients to do relay selection rather than delegating it to the

proxy.

However, other types of proxy exist whose purpose is to do relay selection on behalf

of the client, without using a wrapper protocol. The idea is that if a clients sends a REQ
to one of these proxies, it can analyze the filters (as well as the logged-in user) and

make requests to particular relays on the client's behalf.

This sounds nice, and it can work in some scenarios — particularly in a public

broadcast social media context — but breaks down at the edges.

Part of the core responsibility of relays (as mentioned above) is content curation and

access control. In order to know whether a given event should be stored or whether

to grant access, the user is frequently highly germane. However, NIP 42 was

specifically designed to prevent proxies from proxying AUTH (in order to protect users

from session hijacking — remember, relays aren't trusted). For this reason, proxies

simply cannot access relays on behalf of their users. This problem is becoming

https://github.com/coracle-social/multiplextr
https://github.com/nostr-protocol/nips/blob/master/42.md

Building Nostr

57

increasingly common too, as relays implement more policies to protect against spam

and abuse.

Another issue with proxy relays is that relay selection is often based on heuristics

only available to clients, and which can't be inferred from relays. A good example is

when fetching events from NIP 29 groups — a filter with a particular h tag includes no

information the proxy can use to infer relay selection. In theory the proxy could

download the user's list of group servers, but that may be encrypted, incomplete, or

irrelevant to the client's request (for example if the user is viewing a group as a non-

member). In this case, clients can always opt-out of using the proxy, but that only

proves my point about their limitations.

Proxy relays also tend to have poor support from clients, making the problem even

worse — proxies frequently get added to users' inbox/outbox relay selections, which

causes problems with delivery, unnecessary traffic, and (if implementers aren't

careful) potentially infinite synchronization loops. The location where events are

actually stored gets obscured by proxies — and there's no way for clients to tell the

difference between proxy relays and relays that actually store events.

As a result, it's usually best to avoid using a proxy, although the development of a

higher-level wrapper protocol that describes use case or makes room for explicit

relay selections could be interesting and useful.

Wrapping Up

This was a long chapter, for which I apologize. But its length is appropriate because

relays are a sine qua non of Nostr's architecture. Signed data has been around for 50

years, and yet hasn't gained widespread end-user adoption, in part because

communication and storage have remained permissioned or proprietary. Relays have

the ability to unlock signed data for everyday use.

I'm sure many parts of this chapter left you utterly confused as to what I was talking

about. The complexity involved in dealing with relays is in part a natural result of the

many different use cases supported by Nostr. But I'll be the first to admit that a fair

amount of incidental complexity has also snuck in as the protocol has developed.

It may be that a successor protocol comes along and borrows the good parts of Nostr

without any of the bad parts. But for now, it's enough to understand what relays are,

and how to use them.

https://github.com/nostr-protocol/nips/blob/master/29.md

Building Nostr

58

5. Radically Open

All protocols exist on a spectrum between open and closed.

Open protocols invite anyone to participate and build; closed protocols reserve

participation to a select few. Closed protocols don't have a published specification,

don't have publicly available source code that can be used to reverse engineer the it,

and can only be used by authorized developers. Access might be restricted by law,

obscurity, complexity, or secrecy. Some closed protocols even lock things down with

cryptography using techniques like DRM or VIN locking.

But no matter how much control its owners may try to exert, every protocol is at

least somewhat open in the sense that it can be reverse engineered. This idea is

proven repeatedly throughout the history of both analog and digital technology.

Openness is part of an open system. Both physics and computing, (for example) are

"radically" open.

However, just as it's true that no completely closed protocol exists, every "open"

protocol is closed to some extent. The closing of open protocols may be intentional

(as with the W3C's membership requirements) or it may be accidental due to poor

communication — if salient protocol information isn't readily available, developers

may have to resort to reverse engineering to make progress.

For this reason, openness is not equivalent to anarchy — governance of some kind

has to exist. The conflation of the two can actually cause a protocol to become more

obscure through neglect. A similar fallacy is the equivocation of leadership with

control. The job of a standards body is to document, not create, protocols.

As the IETF puts it in their mission statement:

[our] mission is to produce high quality, relevant technical and engineering

documents that influence the way people design, use, and manage the Internet in

such a way as to make the Internet work better. These documents include protocol

standards, best current practices, and informational documents of various kinds.

Designs might come from committee participants' research and opinions, or they

might come from third-party projects that independently gain adoption. In many

cases this works well, particularly at a small scale. But when large commercial

entities get involved, standards can end up benefiting the committee members

Building Nostr

59

rather than the beneficiaries of the technology. As Cory Doctorow puts it in The

Internet Con:

Patent ambushes are against the rules, but other forms of standards capture are fair

game: for example, if the chair, co-chair and secretary all come from a single company

(or a duopoly), that's fine, despite the fact that this means that the largest companies

are literally setting the agenda.

An example of this is how browser development works. Frequently, Google designs

some new API (for example, web components), builds it into Chrome, and because

Google owns so much of the market, other implementations are forced to adapt.

Unless of course you're Apple, which forces all apps on iOS to use their inferior

browser engine, Webkit, in order to make native apps look better in comparison.

The exploitation of protocols is a well-known dynamic, a common pattern being to

"Embrace, Extend, Extinguish". This is what Google did with XMPP and Google Talk.

First, they found an open protocol that solved a problem and adopted it, immediately

benefiting from the network effects that had developed there. They then extended

the protocol with incompatible alternatives to standard protocol features for chat

archival, file transfers, and more. Initially, Google supported federation but didn't

fully implement all standard security features, causing a number of servers to refuse

connections to Google's servers. Eventually, Google dropped federation entirely.

Examples abound: Microsoft created incompatible versions of Java, HTML, Kerberos,

CIFS, and LDAP; Apple added platform-specific APIs to Safari; Oracle created

proprietary PL/SQL extensions; Google extended the web with their Accelerated

Mobile Pages.

This approach is a threat to Nostr just like it's a threat to every other open protocol.

But what's different about Nostr is that it is radically open. The Nostr Protocol is not

something that is contained in a spec document that only certain people can write to,

but is defined by the actual implementations. Nostr's "kind" system makes the

protocol infinitely extensible, broadening its scope to pretty much any content type

that can exist in a social setting.

Embrace, Extend, Extinguish works by capturing users, not implementations.

Therefore, resisting it is possible to the extent that implementers are able to tolerate

the loss of users. In a sense, this is impossible to defend against, because users are the

source of a network's value. At the same time, Nostr is designed for network

partitioning — both by social cluster and by content type. The diversity of use cases

https://www.goodreads.com/book/show/120806182-the-internet-con
https://www.goodreads.com/book/show/120806182-the-internet-con

Building Nostr

60

on Nostr increases the implementation cost of any whole-protocol attack, while the

locality of social clusters means that some users might switch to a fork without

affecting the rest of the network.

Politics and Protocol

Open protocols in general are more often collections of patterns found in the wild

than top-down specifications that dictate implementation. But Nostr explicitly

embraces this paradigm. Nostr, like the internet, is not monolithic. There are some

fundamental assumptions (e.g. proper serialization of events), but the vast majority

of it is optional and loosely coupled with the rest. As a result, any specification can

only be partially comprehensive, and is necessarily relative to the perspective of its

author (just like web of trust). In the same way that anyone can write an

implementation, anyone can also write a specification describing their work, or even

what they think should be the case.

There is an important qualification to this though. One application with no users can

create a new event kind with a custom data format, but that doesn't mean anyone

else will want to adopt it. On the other hand, a widely used application can create

new data formats (or hijack existing ones) pretty much at will, and others will follow

suit.

Every protocol feature exists on a spectrum between zero and universal adoption.

Because the entire point of a protocol is to standardize something between

implementations, this means that the extent to which a given standard is adopted

determines how much a part of "the protocol" it is.

Efforts to standardize the Nostr Protocol are more akin to discovery than invention.

There is a massive design space for the Nostr Protocol, and it's individual developers

who explore that design space to find new solutions to problems. The people that

document those solutions are only recording what has been built in the wild. This

book is a good example; in it I offer a fair amount of prescriptive advice — but it's up

to you to decide whether to follow it.

There's been some criticism of the various "centralized" actors in Nostr, most notably

certain funding organizations and the maintainers of the specifications found on the

NIPs repository. The idea is that a decentralized protocol should have decentralized

funding, decentralized software, and a decentralized specification if it's going to live

up to its permissionless ethos. And if a decentralized protocol is successful, then all

these aspects of governance should be built on the protocol itself, right?

Building Nostr

61

But technology does not solve problems, people do; protocol development is

necessarily dependent on politics.

For some people, "politics" is a trigger word which evokes images of stale

bureaucracies and misaligned elected representatives. But I mean it in the

Aristotelian sense — a community of people working together to create an

environment which they intend to inhabit. This is just another way of saying that a

protocol, by definition, has to be developed by people working together in a

structured way.

This is very difficult to get right, partly because politics is hard, but also because good

protocol development is a result of successful resistance against the natural

incentives of the market. Markets are good in that they allow individuals and

businesses to optimize for survival, but they also do a poor job of protecting

commons, which are ultimately captured or ruined unless the different participants

in the system resist the gravity of zero-sum competition.

Right now, the Nostr community is far smaller and less consequential than, for

example, the Bitcoin development community. Because fewer corporations are

involved, we have fewer malincentives to deal with, which means we have a higher

tolerance for political centralization. This has certain advantages with respect to

communication efficiency. But the need for decentralization will increase as the

monetary value associated with the ability to capture the protocol increases.

Because Nostr developers tend to be a pretty disagreeable bunch, fragmentation of

the protocol is already happening. I personally worry that the centrifugal force of this

disintegration might have the effect of actually making the protocol more closed, not

through permissioned politics, but as a result of the complexity inherent in making

different parts of the protocol more obscure. In either case, politics becomes

dysfunctional, forcing developers to resort to reverse-engineering the protocol in

order to interoperate — or go their own way.

That said, protocol decentralization will need to happen sooner or later. The radically

decentralized approach is one of Nostr's risky bets, and we may as well fail (or

succeed) fast. The sooner we start practicing decentralized protocol development,

the sooner we learn how to do it well.

May people already self-publish original NIPs, or even create alternative curations of

protocol features. See Appendix B for a non-exhaustive list. The main problem with

this is that it makes consensus more difficult and therefore weakens interoperability.

If there are 50 different sources for protocol features, it becomes hard to discover

/Users/jstaab/my/nostr/building-nostr/content/0b-resources.md

Building Nostr

62

them all. Right now, the NIPs repository is the place where the most visibility exists

into new protocol proposals.

But the Nostr Protocol could eventually be moved to Nostr. There have been

attempts at this, though they haven't been fully developed or adopted, and have

some outstanding problems. At a minimum, here's what would be necessary to make

such a project viable:

The ability to fork a spec and view the version history across all forks.

Replaceable events don't work for this because they don't include old versions.

The ability for implementations to signal spec and version support is required

to help others decide which to implement in order to be interoperable. Ideally,

the reputation of a given opinion would be based on ownership of relevant NIP

89 listings and their attendant user recommendations. This ensures

inconsequential implementations don't derail interoperability, and could be set

up to avoid over-weighting extremely popular implementations by capping

reputation-based weighting.

A forum for developers to propose new specs before they're implemented in

order to get feedback on their design.

A forum for tracking and resolving interoperability issues (this currently exists

on GitHub in the form of the nostrability project).

This kind of thing is hard to organize even in the best case, as the history and relative

success of Stack Exchange makes clear. Decentralized consensus is a very high bar.

The crypto graveyard is littered with decentralized autonomous organizations

(DAOs).

Luckily, some incentives do work in our favor because interoperability is the key

value proposition of Nostr. This is why the NIPs repo specifies that any NIP should

have at least two client implementations and a relay implementation if relevant. This

ensures that nothing makes it into the NIP repo that isn't already an interoperable

part of the protocol.

This criteria also helps reduce scope, since a lot of things don't need to be

interoperable. For example, mobile push notifications are cryptographically tied to a

particular app, which means there's no real point in including them — systems can't

talk to each other anyway.

https://github.com/nostr-protocol/nips/blob/master/89.md
https://github.com/nostr-protocol/nips/blob/master/89.md
https://github.com/nostrability/nostrability

Building Nostr

63

Thinking in Public

One thing that has obscured the actual dynamics of Nostr's protocol development is

the use of the NIPs repo for speculative proposals as well as for the documentation of

existing work.

In contrast with the actual contents of the repository, the issues and PRs that are

hosted on GitHub frequently are requests for comment rather than established

protocol features. This goes back to the necessity for political involvement around

protocol development. There's a trade-off between implementing the first idea that

pops into your head, and enduring a long period of review before calling the idea

"official". No review results in garbage specifications getting adopted. Too much

review enervates would-be contributors, who lose interest and go elsewhere.

Some protocols, like MLS, have been in development for years without practical

application. This is probably a good idea because the entire idea is to have a

watertight security and privacy model. But this isn't really how Nostr works.

I think of Nostr as the Javascript of the web protocol world. Javascript, born at

Netscape in 1995, was designed and implemented in just ten days by Brendan Eich.

Eich had to reconcile his ideas about programming language design, which were

borrowed from Scheme, with an appeal to the current popularity of Java for

marketing reasons.

The result was Javascript, a language with multiple null values, quirky type coercion,

and several arcane features like labels that ultimately fell by the wayside, but which

remain supported by implementations. In addition, in the early days, JavaScript

implementations were notoriously fragile and incompatible between browsers

(partially due to lack of standardization, partly due to browser vendors trying to

capture the market).

Much better languages could have been designed for the purpose of scripting in web

browsers. But JavaScript hit the ground running, and now it is the single most used

programming language in the world.

Nostr is full of half-baked ideas written by application developers (as opposed to

protocol developers) who are learning the discipline of protocol development on the

fly. Nostr is a mess. Incompatibilities between implementations abound. Data types

that are prone to race conditions are a core part of the protocol. Kinds get

overloaded. Services go offline.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/label

Building Nostr

64

But this is all by design. And I won't say that there aren't large existential risks

associated with this development approach. But given Javascript's success, it's hard

to say that it's a much worse model for protocol development than anything else.

In fact, most successful protocols are more or less like this. Protocols (and software)

designed in a top-down manner frequently end up failing to live up to their design

goals. It's only through implementation that what is actually needed can be

understood, and it's only through implementation that multiple implementations can

exist to interoperate in the first place. Nostr takes the implementation-first approach

to an extreme.

Backwards Compatibility

Prioritizing implementations doesn't mean that the process of design, review, and

feedback is not necessary though. In Nostr's openness and "shoot first ask questions

later" environment, a lot of discussion and review still happens, just well after

protocol features become "official." Just because something is in the NIPs repo

doesn't make it sacred.

Migrating away from existing standards has been one of the most divisive issues in

the Nostr developer community to date. Maintaining backwards compatibility is a

massively important principle in software development, whether you're creating a

system that's proprietary or an open protocol.

When deploying an update to a proprietary system, it's important that the old

version of the application continue to be able to talk to the database, that the old

version of the client continue to be able to talk to the backend, etc. But this

requirement is ephemeral because the organization running the infrastructure has

the ability to eventually upgrade the entire stack and throw away the old code.

In protocol development, backwards compatibility is a much harder problem. In

order to fully implement backwards compatibility, you can never really remove a

feature. We see this with HTML, where blink and marquee tags created in the 1990s

still work. Programming languages commonly maintain backwards compatibility to

make migrations easier — when Python 3 broke compatibility with Python 2, it took

almost ten years for users to migrate.

But there is a cost to compatibility: the monotonic increase in implementation

complexity. Complexity makes implementation more expensive. This in turn makes

the protocol vulnerable to capture by entities with the resources to deal with this

Building Nostr

65

complexity.

In a descriptive, lean protocol like Nostr, backwards compatibility remains important

(particularly due to the importance of avoiding disruption of network effects), but in

a much more practical sense. Backwards compatibility has a purpose, and that

purpose is to maintain a good user experience. We don't need to be dogmatic about

backwards compatibility. As Ralph Waldo Emerson said, "a foolish consistency is the

hobgoblin of little minds."

Backwards incompatible protocol changes aren't as destructive as people frequently

make them out to be. This is particularly true because the universal desire for

interoperability necessarily encourages conservatism in breaking compatibility.

First of all, the breadth of the nostr protocol makes it possible to change one part of

the protocol without affecting the rest. Only the clients which actually implement the

feature affected by a change have to care about it. This can be a relatively large

number if the feature affected involves follow lists, or microblogging content. But it

might be much smaller if it involves some more obscure part of the protocol with only

two or three implementations. In contrast, HTML has to be compatible across billions
of websites.

In addition, there can really be no changes by fiat (even if, as sometimes happens,

backwards-incompatible changes make it into a specification document without

community buy-in). Nostr is an adversarial environment, and relies on developers to

actually implement changes they want to see. To the extent that an implementation

has active users, it can choose to go along with the fork, or hold back.

In this way, implementations that want to sponsor either a new protocol feature or

an incompatible change can exert pressure on the rest of the network by threatening

more or less incompatibility. Likewise, implementations that wish to keep the

protocol as is, or not implement a new feature, can do the same. This can be done by

shaming competitors in public while maintaining interoperability, or by actually

breaking compatibility.

This dynamic is currently playing out with Nostr direct messages. Nostr's original

direct messaging implementation (NIP 04) leaks a lot of metadata, which severely

undermines user privacy. This problem was severe enough that it led to a new DM

standard (NIP 17) which leaks signficantly less metadata. As of the time of this

writing, NIP 17 is adopted in the majority of popular Nostr clients, with two

significant exceptions — both of which are focused on high quality UX, and so put a

premium on DM delivery and product focus.

https://github.com/nostr-protocol/nips/blob/master/04.md
https://github.com/nostr-protocol/nips/blob/master/17.md

Building Nostr

66

In a sense, the creation and adoption of NIP 17 DMs can be seen as an attack on

these clients because breaking DMs undermines their primary value proposition. The

intention behind this "attack" is to protect user privacy but regardless, the

introduction of incompatibility forces an eventual resolution to the issue. Eventually,

one faction or other will lose users to the other.

One thing to keep in mind, however, is that this kind of adversarial action can cause

the protocol itself to lose users, harming all sides. For this reason, backwards

incompatibility should be introduced with care. Forks always come with the risk of

alienating users, or being on the losing end of network effects, which is a natural

restraint to reckless behavior.

Forks are a fact of life in the context of an adversarial system. Any actor can choose

to fork at any time, for any reason. Even if some forks are well-intentioned and

constructive, others may not be. For this reason, implementers must always be

prepared to defend their version of the protocol both technically (through defensive

coding) and politically (by educating users about the fork and persuading other

developers of their view). Core protocol features will gain momentum over time,

contributing to stability, but there will always be a certain amount of chaos at the

edges. This chaos is a necessary consequence of a radically open protocol.

Hackability

I've been talking a lot about what interoperability is and how to support it, but I

haven't really mentioned what exactly interoperability is for. What good is it for

multiple implementations to be able to talk to each other?

This goes back to the problem that Nostr is trying to solve, which is Big Tech's

capture of social media platforms and by proxy, their users. In legacy social media,

users don't have credible exit — which is to say that they can't leave a platform and

retain their identity or their data.

In order for this to work, not only does data have to be open and unconstrained by

custodians (which is what relays and signatures give us) there also have to be

multiple implementations that can interpret this data. A user has to be able to have a

choice; if there's only one implementation because of protocol complexity or

propriety, then users don't have the ability to exit because they can't enter

something else. In order for users to move, there need to be off-ramps and on-ramps.

Openness makes it possible for multiple implementations to interoperate. But that's

https://github.com/nostr-protocol/nips/blob/master/17.md
https://newsletter.squishy.computer/p/credible-exit

Building Nostr

67

a fairly low bar. This is true of (for example) the SQL standard, which defines certain

data types, syntax, access control, and a framework for transaction isolation levels,

making it possible to access the same database from multiple different software

applications. But there are limits to the interoperability this provides; application

code remains proprietary. While it's possible to look at a database schema and get a

vague sense of what the data is, it's much harder to reverse engineer how it's used

without looking at the accompanying application.

In the same way, Nostr protocol specifications are only one resource for helping

developers create interoperable implementations. This is particularly true because

popular features may not necessarily be documented in every case. If a popular

implementation isn't open source, it becomes much harder to reverse engineer these

protocol features in order to allow others to adopt them. Open-source software

functions as reference implementations which can be read, copied, and adapted to

support new implementations of the same use case. This indirectly benefits users by

providing more options to choose from.

But it also benefits users directly. AI coding assistants are bad at a lot of things, but

one thing they can do is allow non-technical users to take off-the-shelf software and

adapt it to their needs without having to understand what's going on under the hood.

Software fails its users more often because of cosmetic problems than because of

flaws in the implementation of their problem domain.

A broken click handler can render tens of thousands of lines of well-tested code

useless. In the same way, adding a new button to an existing piece of software is

often a trivial operation, but requires the expertise of the end user to determine

what the button should do. Certain affordances may also only make sense to a single

person, and so would never get implemented due to the maintenance cost

outweighing the benefit rendered to the single user.

AI coding assistants, in contrast, enable users to convert rigid, opaque software

platforms into environments full of affordances they can take advantage of in the

same way an experienced programmer can customize his editor or terminal by

writing plugins.

Giving end users the ability to create tools for working with the protocol more

directly only increases the utility the protocol offers those users. Even if something

goes wrong and the AI hallucinates and creates a fork in the protocol, the damage is

limited by virtue of the implementation being a one-off. Diversity of implementations

also improves the health of the network itself by distributing control over

Building Nostr

68

implementations, making the protocol harder to attack.

This dynamic is maybe more important than it sounds at first. I think this is one of the

most important things about open protocols and one of the most exciting things

about AI-assisted coding. Used properly, AI-assisted coding has the ability to tear

down walled gardens at a scale that we can't even imagine.

If AI has the effect of amplifying user agency in the digital world, users become more

capable of shaping the digital world based on their values and goals, which are

invariably at odds with the software platforms that we're trapped inside in the

current iteration of the internet.

Technology doesn't solve problems, people do. Technology is an extension of human

will into the world. And yes, there can be unintended consequences. But when

individuals use what Ivan Illich calls "convivial tools", their agency is multiplied and

the negative externalities are limited to the scale at which that individual operates.

This creates a diverse ecosystem of self-interested actors who can not only do what

they want in the digital world, but protect themselves from other people who would

take advantage of them, either through massive structures of control or through

exploitation of centralized systems by outsiders.

This attitude of creative use of software in order to overcome its limitations or

repurpose it for the user's own agenda is encapsulated in the term "hacker". Hackers

look at existing software not as complete or normative, but as an opportunity to do

something new and subversive. The hacker mindset is the exertion of human agency

over technological systems, and is desperately needed in our day of technological

passivity.

It could very well be that AI assistance, both in coding and in research and many

other ways, is far more important than the existence of an open protocol. It may even

obviate the need for protocol documentation to some extent because LLMs can

reverse engineer whatever software is already in use. The role of the protocol could

shift from a set of rules for how to implement enumerated functionality to a trellis on

which organically synthesized human/machine language can grow.

It's also possible that human nature and our willingness to put up with incredible

levels of inconvenience will leave this opportunity untapped. The relative lack of

adoption of even simple things like browser extensions is evidence of our natural

inclination to be slaves to our technology. But it's possible AI agents may lead to the

spread of something akin to the "hacker mentality" even among non-technical users

Building Nostr

69

— not because they make hacking "easy", but by unlocking the universal language of

computing for use by non-specialists.

Application Ecosystems

Given the radical openness of the Nostr protocol, some additional mechanisms are

necessary in order to cope with the certainty of running into event kinds that

implementations don't recognize. It's categorically impossible for clients to

implement support for every Nostr data format because new formats are created

constantly. Implementations have to have a strategy for dealing with events they

don't understand.

Suppose a user embeds an event to a kind 30023 long form article in a kind 1
microblogging post and your client doesn't want to add render support for long form

articles. How can you handle that event without knowing what it is?

A few mechanisms have been proposed for dealing with this. They could be more

robust, but a good foundation has been laid.

First, we have NIP 31, which proposes the inclusion of an alt tag on events which

describes in human readable language what the event is. Following this, a Nostr

client could look at a long form article, see an alt tag with the title of the article and

an explanation of what that event actually is, and display that to the user.

This is something, but it's not very compelling. This is really a dead-end solution, since

all the user knows is that they aren't seeing content that they would like to see.

There's no call to action for how to actually view the content (unless a link is included

in the alt tag — which would be a brittle and centralizing way to handle the problem).

Even a simple error message would probably be an improvement over alt messages

because at least it would demonstrate to the user that something is indeed missing or

broken.

Luckily, we have a better option. NIP 89 defines some mechanisms that can be used

by clients for presenting a call to action when faced with unknown event kinds using

a technique commonly known in programming as "reflection", which allows a

program to inspect its own constructs at runtime and adapt accordingly.

In NIP 89, An "application handler" is a kind 31990 event which includes tags

describing a given application and its purpose, as well as affordances for opening a

given event or profile in that application. Application handlers also include a k tag,

https://github.com/nostr-protocol/nips/blob/master/31.md
https://github.com/nostr-protocol/nips/blob/master/89.md
https://github.com/nostr-protocol/nips/blob/master/89.md

Building Nostr

70

which can be used to filter handler events.

So in our scenario above, the microblogging client might ask the network for kind
31990 handler events with a k tag matching 30023. This would return a bunch of

application handlers with web, android, ios, or other platform tags. The client can

then present options for viewing the long form article to the user.

This allows implementations to reduce their scope in order to avoid implementing

features they don't care about supporting, while at the same time improving the

state of the network by advertising alternatives or complementary applications to

their users.

This isn't something that a walled garden would ever want to do. Their impulse is

always to vertically integrate either through acquisition or new product

development. On Nostr, because implementations can enjoy the network effect of

the entire protocol without implementing all of it, developers can afford to

recommend alternatives. In fact, doing so makes their value proposition event

stronger because users now have a myriad of alternatives to pick from based on their

interests, not those of the platform.

NIP 89 further enhances this ability to search for handlers with kind 31989 "handler

recommendation" events. Because anyone can publish a handler event, it's not a

good idea to present them to users without some level of vetting. Otherwise it would

be trivial to impersonate an existing client in order execute a phishing attack. Even if

application handlers are legitimate, knowing whether a given handler is "good" or not

is important signal.

kind 31989 recommendation events allow anyone to advertise clients that they use

to handle a particular kind. In combination with web-of-trust analysis, these

recommendations can be used by clients to validate a given application handler.

Maybe only one person that the user follows uses an application handler, or maybe a

hundred people do.

The more popular app is, the more likely it is to provide the user with a good

experience. At the same time, the handler with only one recommendation might still

be able provide an interesting alternative to the popular app, eroding the hold that

popular applications have on the network. This can help mitigate the concentration

of power in the hands of a few popular implementations.

Application handlers are not the only kind of recommendation event on Nostr by any

stretch — recommendation events also exist for relays, Cashu mints, DVMs, and

https://github.com/nostr-protocol/nips/blob/master/89.md

Building Nostr

71

more.

In a forest, trees trade sugars to fungi in exchange for minerals extracted from the

soil. These wildly different life forms have a mutually beneficial relationship that

results from the exchange of these resources. Likewise, Nostr clients and Nostr users

benefit from the structured exchange of signed events and functionality.

The existence of recommendations within a web of cryptographic identities enables

the development of a social media ecosystem incomparable to what has gone before.

An "ecosystem" is a complex environment which life forms inhabit. A "media

ecosystem" is a complex digital environment that humans inhabit.

In this chapter, I have attempted to highlight the benefits of "radical openness" in

protocol development. Top-down design reduces essential complexity, making a

protocol easier to understand and implement. In contrast, an open protocol

multiplies complexity by virtue of the many participants and their relatively free

ability to interact with other users and modify implementations.

An increase in complexity makes an environment harder to understand as a whole,

but does not necessarily mean a loss of agency. If the appropriate affordances are

provided to users to help them manage the complexity they encounter, their agency

can be increased rather than diminished. This in turn allows them to determine their

own role in the ongoing emergent complexity of the system, and adapt it to their own

purposes.

This is a truer form of "social media" than the sanitized, corporate marketing

machines which seek to quantify relationships and extract value. If we "embrace the

chaos" of the Nostr protocol, it can become much harder to quantify, let alone

control — all to the benefit of its users.

Building Nostr

72

6. Value for Value

The native currency of the internet is not money but attention.

Sure, there are plenty of places where money is paid for goods or services on the

internet. But in large part, these payments are made not between users (who have

very little money), but between businesses who have a lot of it, as well as the

incentive to leverage that capital for increased revenue or market share growth.

The main drivers of trade on the internet are businesses: companies with a product

they wish to sell, and platforms that capture user attention and data in order to sell it

to advertisers or data brokers.

When regular people like you and me pay for something on the internet, it's very

rarely an isolated occurrence - there are almost always complex systems operating

behind the scenes which are intended to leverage that transaction in strategic ways.

If you buy a product on Amazon, they upsell you their subscription offering. And once

you have a subscription, you have a sunk cost that encourages you to buy more.

When you go to buy something, other product recommendations are offered to you,

which are often paid for by the companies attempting to sell the product. Once

you've bought something, Amazon asks you to leave a review to encourage others to

buy. Every transaction is intended to lead to subsequent transactions.

Amazon wants as many transactions as possible to be processed through their

platform, not because they delight in brokering connections between buyers and

sellers, but because they love to extract their cut from every transaction.

The same is true in a digital goods context, for example, on streaming services. Sure,

you can pay for a subscription, but it doesn't mean the platform won't show you ads.

And even if you choose to upgrade to the ad-free "premium" offering, you're still

caught in a system optimized not to satsify you and let you go, but for the progressive

capture of your attention - whether to reduce churn, grow by network effect, or

increase stock prices.

We pay for access to the internet with our time and attention, and we do it on their

terms, not our own.

Building Nostr

73

Money is Time

In his talk entitled You Wouldn't Zap a Car Crash, Gigi points out this quirk of

language: that we pay attention and spend time. Money is a proxy for the time we

have spent accumulating it. But on the internet, that relationship has been reversed.

Our time has become a proxy for the money that platforms wish to accumulate.

This is a very clever trick because there are two different ways to view time. Before

clocks, time was inhabited either for the purpose of performing work or enjoying

leisure, but the two things often coincided. Later, clocks, by allowing us to quantify

time spent on a given task, partitioned our time into time with a monetary value

(work) and time without monetary value (leisure).

As a result, both work and leisure have been devalued. At work, we're tempted to

punch the clock, failing to make the most of our time on the job. At the same time, we

often aren't sufficiently jealous of our leisure time because it has no nominal "value".

Instead of working to enrich ourselves during our leisure time (whether by doing a

hobby, going on a date, or enjoying nature), we fall into the trap of inertia, set for us

by a consumer culture.

That's not to say that media and products have no cultural or personal value, but to

the extent that the outsourcing of our activity leads to the monetization of our time

and attention, our leisure is converted into work — quantified, measured, and

capitalized on by third parties.

The time that we spend scrolling, browsing, binge watching, and swiping is time that

we feel to be well spent in relaxation, "self-care", or entertainment. But in reality,

because these media are designed to be addictive, we spend far more time engaging

with them than is healthy. This over-consumption in turn tends to deprive us of rest,

making us more anxious, distracted, and unproductive.

The simple solution to this predicament is simply to "touch grass". Choosing to opt

out is a powerful way to re-assert control over our own time. But the perversion of

our digital environment does not obviate its benefits. While many of the things the

internet offers are intended to appeal to our baser impulses and vices, the original

vision of the internet — the cultivation of communication, trade, freedom, and

community — can be recovered.

Gigi posits a world in which the content that is most readily monetized is not the

content that appeals to our baser instincts, but to our conscious, intentional

https://www.youtube.com/watch?v=4usXBGvufKg

Building Nostr

74

allocation of stored value — in the form of actual money. This restores the role of

money as a proxy for our time, as it should be.

He uses the evocative phrase "you wouldn't zap a car crash" to illustrate this. You

might watch a car crash against your own will, or against your better judgment. But

sending your hard-earned money to the person who distracted you from whatever

you were doing would require an irrational, un-self-interested decision.

If the internet were powered by microtransactions rather than attention parasitism,

only the content that its inhabitants genuinely appreciate, find helpful, enjoyable,

interesting, or useful would accumulate value to itself.

Nostr makes this vision possible (at least on a technical level) through Bitcoin

micropayments encoded into Nostr events known as "zaps".

Customers, Patrons, and Participants

The idea of "value-for-value" has been around for quite a while, particularly in the

podcasting 2.0 space, where listeners can stream satoshis to the podcast they're

listening to in order to show appreciation for the content they're consuming. The

idea is that because the payment is voluntary, it demonstrates that people are willing

to compensate producers based on value received. But this is an inadequate

understanding of what is actually going with this model.

In trade, the buyer sends a payment and in return the seller releases the content to

them. We see this model at work in a content creation context with Patreon,

members-only Twitch streams, Substacks, etc. Trade works really well because it

aligns with how value is exchanged. Value is subjective, and price is determined by

the balance between supply and demand.

However, as Eric Hughes notes in A Cypherpunk's Manifesto, information "longs to

be free". While digital content does have a fixed cost of production, it has an

extremely low marginal cost. This means that the supply of new content is limited,

but the supply of existing content is infinite. For digital content, price is determined

by purchasers' expectation of future production of content, not contention over

existing units. Price can be inflated by introducing artificial scarcity through

copyright and access-controlled publishing, but this is only a trick which allows the

producer to have an asymmetric privilege in the transaction — while most content

producers make very little money, some strike it rich simply by replicating the same

content and selling it many times.

https://www.activism.net/cypherpunk/manifesto.html

Building Nostr

75

For this reason, monetizing digital content through conventional trade is essentially

incongruous. In this context, value-for-value's reversal of the transaction makes

sense — supporters are directly incentivizing the content producer to continue

creating new content. This dynamic is explicitly embraced in crowdfunding, in which

consumers pledge in advance a certain amount of money for the development of a

product.

Because of this dynamic, value-for-value has more in common with patronage than

with trade. Just as Julius II sponsored Michelangelo's work on the Sistine Chapel,

your $5/mo donation to your favorite podcast encourages the continuation of the

project.

Patronage is not without its ulterior motives, however. Apart from purely altruistic

motives, patronage is almost always a means for the patron to increase their

influence to some other end, whether political, religious, propagandistic, or egoistic.

Patronage is, in essence, a public relations tool. In return for promoting art and

culture, patrons increase their influence.

Crowd-sourced patronage doesn't have quite this same dynamic because of the

relative insignificance of any individual contributor. But supporters still need to get

something out of the relationship — people aren't naturally inclined to give away

something for nothing, or to voluntarily shoulder their share of responsibility in

maintaining a commons.

Rather than influence or reputation per se, the thing that supporters of content

creators primarily receive in exchange for their money is a sense of identity or

belonging. By giving money to a content creator (or, more broadly, any "cause"),

patrons receive a number of social benefits. In this way, distributed patronage is not

so different from its more traditional form; in both cases patronage is a form of self-

promotion.

Plus, by donating, patrons get to signal their virtue (ironically) as someone who gives

without expecting compensation. This in-group signaling (or, less cynically,

community building) is frequently more valuable than the project itself.

By contributing to a project, patrons are also assigning themselves a role in its

creation, and may gain certain privileges, for example the opportunity to participate

in the direction of the project by voting, or to contribute content in the form of fan

art or interviews.

In value-for-value podcasting, it's common for boosts to include a message which the

Building Nostr

76

content creator then reads during the show. This allows the sender to borrow a little

bit of the platform, maybe for marketing purposes, or simply to have their voice

heard.

This can be a very healthy dynamic, not to mention pretty fun.

Not only is it nice to see yourself on a leaderboard and try to out-zap other people,

but the very act of crowd-funding is itself a unique communication medium full of

idiosyncrasies and inside jokes that members of the community can enjoy, and which

further galvanize group identity.

This type of content-centric community building can have other second-order

benefits, including the development of relationships and a shared set of values.

In most cases, however, this only really works at a small scale. The social benefits that

attend community involvement can only scale so far. Once the space that exists

within a community is saturated, members' voices become more noise than signal.

The time and energy required to actively participate in a given community is also a

limit on community growth; community members will take the time to participate to

the extent that they are personally invested in the community.

We see this same limit on scale in the growth patterns of certain types of businesses.

A company might create a product which is really tailored to their initial users, who

show a high willingness to pay. This can encourage additional investment in the

business in order to capture more of the market. But the next cohort — even if

acquired — is often far harder to monetize, because early adopters tend to be the

kind of people who will pay for a niche product, while subsequent cohorts are less

invested.

At the end of the day, it is possible to make a value for value model work — but it's

important to understand the dynamics actually in play.

Paying It Forward

Micropayments are not inherently social; there are some use cases that may not be

as exciting or obvious, but may be even more important.

Money is most commonly used to pay for goods and services. A more obvious

statement could hardly be made, but given that the previous section was all about

paying for social status (which is neither a good nor a service), it seemed worth

Building Nostr

77

repeating.

In the software world, this generally takes the form of puchasing a software product

which the user intends to interact with directly. This creates an asymmetric payoff

for products that are user-facing vs software libraries that are invisible to the user.

This is a well-known problem, and has resulted in attempts to support open-source

developers by asking businesses to pledge a certain amount of support.

This system could work, in the same way that patronage works; businesses that do

support open source can use such donations as a tool for self-promotion. But given

that donations are entirely voluntary, and because large businesses are part of the

problem Nostr is attempting to solve, this approach has its limits.

But what if instead of asking the companies that rely on open-source software to

support developers, we asked users to do it directly? With the integration of wallets

into Nostr clients, this becomes possible. A client could simply include a manifest

which lists the libraries it relies upon, along with Nostr pubkeys for the developers,

and users could directly donate to all contributors to the software they're using.

This would involve finding solutions for a number of problems, from falsification of

developer pubkeys to UX, and the incentives might not work out anyway.

But even if the libraries can't get support this way, the services that users interact

with can. To the extent that clients transparently mediate a user's relationship with a

third party service (like a relay, or a DVM), they can include affordances that allow

users to support those services directly, without having to actually handle any of the

money.

In fact, some work has already been done in this area; Keychat supports relays by

sending ecash tokens in-band, and NIP 90 includes affordances for paying DVMs for

their work. Relays could also charge money to publishers as a spam mitigation

mechanism, or to gatekeep relay-based communities.

None of these ideas have been widely adopted because Nostr is still in its

bootstrapping phase, but if you squint your eyes you can see this aspect of the new

internet taking shape — where money is deeply integrated into the very protocols

that facilitate communication. To the extent this can be achieved, our attention can

finally stop being the currency of the internet.

https://opensourcepledge.com/
https://www.keychat.io/
https://github.com/nostr-protocol/nips/blob/master/90.md

Building Nostr

78

Zaps and Nutzaps

With all that out of the way, let's get into the nuts and bolts of value-for-value

micropayments on Nostr.

While other payment mechanisms (e.g., onchain bitcoin, monero, and even fiat) have

been proposed, there are currently two standards for micropayments on Nostr, both

built on bitcoin.

Lightning Zaps

The first (and original) is NIP 57 zaps, which allow users to couple the payment of a

Lightning invoice (requested from the receiver's wallet) to a Nostr event that gets

published by the sender's wallet, creating a public artifact demonstrating that they

paid the receiver. The flow is fairly complex, so here's a diagram, borrowed from

nostr.how:

Zaps support all of the value for value use cases mentioned above and can even be

used for paywalled content, since zap receipts are signed by the receiver's wallet key.

As long as the receiver trusts their wallet, they can respond to these receipts in any

way that they choose.

There are a couple important limitations to zaps. First is that it requires both the

https://github.com/nostr-protocol/nips/blob/master/57.md
https://nostr.how

Building Nostr

79

sender and the receiver's wallets to be online. This means that wallets either have to

be self-hosted, which is a significant hurdle for non-technical users, or they have to

be custodial.

The other important flaw is that zap receipts are only useful to the extent that the

receiver's wallet can be trusted to competently issue them. This means that the

wallet can create as many fake zaps as they want by issuing receipts for invoices that

weren't actually paid. Or, zap receipts might be incorrectly constructed, delivered to

the wrong relays, or just not issued at all. Because of this, it's fairly common to pay for

a zap but fail to receive the social benefit — without any ability to get a refund.

Even if a wallet provider is both competent and honest, anyone can create any

number of sock puppet accounts and use them to send zaps to their own wallet. To

avoid this problem, implementations have to filter zaps by sender based on web of

trust (or another mechanism). For services that provide a "trending" feed based on

zaps, this is especially important.

Nutzaps

Next up we have NIP 61 "nutzaps", which are an entirely separate standard powered

by pubkey-locked Cashu tokens (hence the pun).

The neat thing about ecash zaps is that they don't rely on any third party to facilitate

a transaction — the ecash is in the wallet. This makes implementation significantly

easier; with no external services to work with (apart from mints, which are

interchangeable), a NIP 60 ecash wallet can included in any application simply by

calling a library. And because NIP 60 wallets are stored as kind 17375 Nostr events,

your ecash follows you across the network, just like your profile or relay selections.

Because the Cashu tokens are locked to the receiver's pubkey, the receiver can

immediately verify that the eCash has not been double spent. This solves the

problem of untrustworthy receiver wallets, although it doesn't provide sybil

resistance on its own.

Custodian Risk

Both eCash and custodial lightning payments are vulnerable to custodians in

different ways.

In both cases, the reputation of a given wallet or mint is largely predicated on how

well the service is run in terms of availability, performance, or operator reputation.

https://github.com/nostr-protocol/nips/blob/master/61.md
https://github.com/nostr-protocol/nips/blob/master/60.md
https://github.com/nostr-protocol/nips/blob/master/60.md

Building Nostr

80

The difference between the two is that because of money transmitter laws, custodial

lightning wallets are usually more easily identifiable, but also subject to arbitrary

enforcement of regulations.

At scale, a single custodian for many wallets becomes a central point of failure, not

only in terms of availability, but also privacy, solvency, and censorship. While most

wallet providers are unlikely to simply steal funds and disappear, they may be

compelled to implement KYC/AML checks or arbitrarily close certain accounts.

At the same time, eCash mint operators (who are often anonymous in order to avoid

scrutiny under money transmitter laws) are unable to target individual users due to

eCash being a bearer instrument, but can at any time drain the bitcoin backing the

eCash, making tokens worthless. This attack would completely burn the provider's

reputation (and would likely result in prison time if the operator can be identified),

but it also can't really be anticipated by users.

Distributing user funds across multiple mints or wallets does protect the user to

some extent because if a service provider rugs, users will lose only part of their

balance. This is similar to Nostr relay redundancy, which works because information

can be freely copied. Unfortunately, money doesn't work the same way — even if you

only lose some of your money, you still really lose it.

One thing that can mitigate this custody risk, in either case, is the "Uncle Jim" model,

in which lightning nodes or eCash mints are provided to users within an existing trust

structure — for example, within a family, friend group, church, or local community.

Building Nostr

81

7. Communities

In 2020, Twitter surprised everyone by censoring several high-profile accounts. This

directly contradicted the ethos they had carefully cultivated of being a place where

news breaks and ideas can be discussed. When they started censoring political

content to appease advertisers, they undermined their journalistic ethos in the same

way that mainstream media had already been doing for decades.

At Twitter's edges, there were some built-in access controls—for example, private

accounts and blocking—but the main use case of the platform was to democratize the

spread of information and ideas through publicly broadcasted data. Nostr's

architecture is well-adapted to this use case, in that it optimizes for censorship

resistance and easy distribution of content.

Access controls are similar in many ways to censorship, in that they limit the

availability of published data to certain authorized readers. For this reason, an

architecture optimized for censorship resistance is necessarily not optimized for

access controls or privacy.

I've covered the implications to user privacy of an open network elsewhere, but in

this chapter I want to talk about access controls on Nostr from the perspective of

digital communities. Communities have a different goal than broadcast social

networks, which presents the problem of how (or whether) to adapt Nostr to use

cases that require access controls.

Communities are for People

Journalism is about information, facts, and opinions which can be objectified,

analyzed, shared and remixed freely. Communities, on the other hand, are about

people whose identities are complex and dynamic, who have a personal experience

of the world, are self-interested and responsible for their actions, are self-aware and

self-reflective, who have beliefs, intentions, preferences, memory, and imagination.

While the design of any artifact or system requires care to ensure that the designer's

intention is executed with a minimum of negative externalities, extreme care must be

applied if humans are involved — not only because human life and well-being is

precious, but also because humans have a unique gift for screwing things up.

Building Nostr

82

The word "community" comes from the latin word "communitatem", which is a

contraction of "com", which means "together", and "unitas", which means "unity". So,

"community" is "being one, together". This may sound redundant, but it captures the

inherent tension of existing in community — the individual is not erased by the

community, but is instead uniquely fulfilled in it.

While broadcast social media is monolithic and more or less global, communities are

necessarily local and have distinctive subcultures depending on their membership or

stated purpose. Communities may form around a topic, around a cause, around a

location, or around a system of values. They may have leadership, or be entirely

organic. They may be strict about what kinds of activity is in scope, or they may be

much more all-encompassing. They may be as small as two people — a single

relationship — or as large as millions of people.

Understanding the different types of communities (and how to serve them with

software) is irreducibly complex, not just because each one is a unique combination

of each of these concerns, but because people are involved — communities inherit all

the complexity and dynamism of their members.

Communities also exist in community with one another — to the extent that

members of different communities interact (or have membership in multiple

communities), communities will be affected by each other. A community is itself a

higher-order organism which inhabits an ecosystem comprised of a whole complex of

technologies, contexts, and individuals.

Digital Architecture

When writing software for communities, we are creating digital spaces. Just as

physical spaces must be architected to acommodate the activity they're intended to

facilitate, digital spaces must be designed around the type of people and activity that

will inhabit them.

Spaces (even digital ones) are not abstract — they necessarily have certain

particularities. I think technologists can often fall into the trap of thinking that just

because software is infinitely malleable, so are humans. To the extent that a

community has certain characteristics, software must be opinionated in supporting

those. For the same reason, a given digital space will not be appropriate for every

community.

Some design decisions can vary from client to client, but others have to be baked into

Building Nostr

83

the protocol layer. A kitchen is a kitchen, and shouldn't be used like a bathroom — in

the same way, chat rooms, message boards, or calendars are all distinct media that

should be treated differently.

In the remainder of this chapter, I will catalog five different categories of community

along with some ideas about how to accommodate each one: social clusters, small

group chats, topical discussion forums, owned communities, and commons. This

breakdown is in no way normative, but hopefully it is useful when thinking about

digital "communties" as a whole.

Social Clusters

In their most organic form, communities exist only as emergent properties of

individual relationships within an open network. Another term for this is "social

clusters", which can be identified mathematically through graph analysis, or simply

by gestalt.

These kinds of communities are open and informally delineated because they are the

result of the free association of individuals. And yet they are real and do exist — for

example, it's fairly straightforward to assess whether someone is a member of the

libertarian community, a particular friend group, or the Christian Church.

None of these communities enforces who can be a member. Individuals are free to

form associations, and each of these examples transcends the particular instances of

community within them (for example, a particular political party or church). This

complex of one-to-one relationships and transitive relationships is what forms large,

open social cluster-based communities, and frequently form the basis for the

emergence of more formally-defined communities.

In this type of community, topics of discussion (such as current events) may predicate

an actual discussion between individuals, but don't usually define a given social

cluster on their own.

Social clusters constantly re-form as discussions evolve and relationships form.

Clusters also aren't really limited by the Dunbar number, since clustering is

transitive, and can grow to billions of members. Member privacy is either protected

by virtue of the privacy of individual conversations that feed back into the shared

culture of the cluster, or is voluntarily given up in order to attract more attention.

The prominence of various members within a social cluster varies widely as well.

Building Nostr

84

Prominent members serve to solidify the group identity by embodying it in a

concrete persona, while the vast majority of members simply follow and either

support or register dissent with their "thought leaders", sometimes achieving

notoriety themselves, or shifting to an adjacent social cluster. And of course,

members may inhabit many social clusters simultaneously, even ones that may not

seem adjacent from a network analysis standpoint.

This use case is served well by broadcast social media, but is simultaneously

supported by smaller-scale forms of association which allow members to evolve the

group identity without being completely public about it.

Group Chats

At the other end of the spectrum are group chats. Group chats are a fairly well-

defined type of community because in general their members are also well-defined.

Many group chats are comprised of only two people (for example text message

conversations or direct messages, but can scale to dozens, or even hundreds, of

members.

Group chats are defined by there being a relationship between each member. It may

be that multiple people are added to a group chat who don't have a pre-existing

relationship, but because every member is necessarily a recipient of every message,

every member is implicitly connected.

Stated more formally, if there are n members in a group, there are n * (n - 1) / 2
connections between members. The number of relationships, and therefore the

complexity of the social dynamic, increases quadratically as the number of members

increases.

This is of course also true of regular in-person social dynamics. When one person is

added to a conversation, the dynamic completely changes. If another person then

leaves the conversation, the dynamic changes again. A palpable change in tone and

topic occurs depending on the conversation's members.

Because of the each member pair necessarily has a unique relationship, the

requirement that there be a high level of trust (or willingness to engage with other

members) within the group is more strict than in any other type of community. Every

conversation involves all members, meaning sidebar conversations are impossible

without creating a separate group with a subset of members. This becomes more

awkward as the group grows.

Building Nostr

85

To complicate matters, trust is not binary or even one-dimensional. You don't either

trust someone or not trust them, you trust them to a greater or lesser extent.

Furthermore, you may trust someone in certain areas, but not in others. I might trust

a friend to recommend a book, but not to watch my children.

In a conversation with only one other person, what information you share depends

exclusively on your relationship with that person. But the moment you introduce

someone else to the conversation, what information can be shared is limited by the

least trustworthy member of the group. And because trust is multi-dimensional, you

may be willing to talk about topic A with Alice, and topic B with Bob, but not B with

Alice or A with Bob, leaving you very little to say.

The result of this is that as the size of a group grows, chats often stagnate. You invite

your five close friends, they invite their friends, and before you know it, the group has

50 members and no one's willing to say anything because they don't want to bother

everyone in the group.

For this reason, the medium of group chats simply cannot scale without a way to limit

the scope of a given conversation to a subset of the group. In practice, this feature is

not usually included in group chat implementations — instead, users are encouraged

to create an entirely different group.

For this reason, chat groups tend to be either ephemeral and practical, organized

around some short-term need for coordination, or they are predicated on a high level

of relational trust shared between all members of the group.

Discussion Forums

Let's bounce back now to the other end of the spectrum. Just this side of "social

cluster" type communities are "discussion forums".

Discussion forums are not formless and self-assembling like social clusters are, and

neither do they require high levels of trust like small groups do. Instead, discussion

forums are predicated upon some raison d'être — in other words, a topic of

conversation. This topic can vary, from auto repair, to Monty Python fandom, to

mathematics.

In every case, the thing that draws members into a community is some object or idea

of common interest. Discussion forums may be educational, oriented toward

entertainment or professional development, or even places for people to connect

Building Nostr

86

over emotional trauma or shared illness.

Discussion forums are not at odds with people, but they are abstracted from them. It

would be inappropriate to start a political polemic on a discussion forum centered

around gluten intolerance. Doing so would be equivalent to going to your local health

food co-op and canvassing for a political candidate.

At the same time, many discussion forums have an "off-topic" room where things

unrelated to the topic at hand can be discussed. This is a recognition that when

people come together and form a community around a particular topic, they may

form relationships that transcend their original context.

Meetups are a real-life analog to discussion forums. You might want to go jogging

with other people or learn the game of Go. These activities are valuable in

themselves, but can also serve as a starting point for building social relationships that

are best served by a different venue.

Discussion groups are similar to social cluster-type communities, in that their

membership is largely informal and open (except to people who don't follow the

norms of the community). This poses a dilemma. Discussion forums are essentially

open in that the conversation surrounding a given topic should not be gatekept, but

at the same time moderation is required to keep discussion "on topic".

This results in a dynamic frequently seen on Reddit and ActivityPub, where

moderators end up treating a discussion forum as their own private fiefdom,

enforcing rules arbitrarily, and banning other members at will.

Discussion forums frequently fragment when they reach a certain size because the

topic, which is owned by no one, is coupled with group infrastructure, which is owned

by someone. But this breaks down the forum's network effect, which is part of the

core value proposition of creating a digital space in the first place — to gather people

interested in a topic in one place.

Nostr's multi-master architecture can help solve this. If a member of a discussion

forum chooses to fork the group to their own relay with different moderation

policies, they can do that without sacrificing interoperability. A user who is a member

of both can participate in both at once, merging the content in one interface.

This is essentially how NIP 29 works, where a group "belongs" to a relay, but multiple

versions of the same group can exist simultaneously. If you're a member of the group

on both relays, you get the superset of content across the two versions.

https://github.com/nostr-protocol/nips/blob/master/29.md

Building Nostr

87

Other versions of this could be imagined that are not necessarily supported by relays,

but where moderation is a function of user preferences. Users might choose to see all

posts, regardless of moderation, or only posts that have been approved by

moderators, or select their own moderators, or use web of trust or proof of work

heuristics to filter posts.

All of these are legitimate options in a discussion forum context because missing data

is not essential to the conversation. Because there are frequently a large number of

members involved in a discussion forum, the conversation is very broad. Filtering the

conversation based on the relationship a user might have to various social clusters

within the discussion forum is the user's prerogative.

In this sense, missing data isn't a bug. FOMO isn't a problem because the user himself

has chosen policies that cause that data to be missing. This is one of the neat things

about Nostr: it is partition tolerant. Not everyone needs access to everything.

In practice, Nostr implementations of discussion forums haven't gotten this right.

NIP 72 was intended to be "reddit on Nostr", but ended up killing communities by

being overprescriptive. Not only did it define how moderators are selected, (which

should be out of scope given that Nostr's purpose is for giving the end user control

over their experience), but it also prescribed that posts should not be shown unless

moderators approve the posts. Which means that in order for a discussion forum to

function, you need highly active and invested moderators manually approving every

post.

But this is not how discussions grow. They start out informal and unmoderated,

adding moderation as problems accumulate as a result of scale. To the extent that the

leadership of the discussion forum fails to grapple with the difficulties of managing a

group on a social level, the group itself will fail. This is not a failure of technology, but

of the people managing the group.

The discussion forum group type is not limited to forums or subreddits, but can be

seen anywhere that open access is granted to participate without any prior

relationship being established. For example, livestream chats, Discord servers, or

blog post comment sections. In any of these cases, the user can simply register, leave

their comment, and never come back. Access control is only implemented when a

participant breaks the rules or expectations of the discussion forum, whether by

posting spam, harassing other users, or going off-topic.

https://github.com/nostr-protocol/nips/blob/master/72.md

Building Nostr

88

Owned Communities

Next up we have "owned" communities, which are similar to but distinct from

discussion forums. Discussion forums are predicated on some general topic that

doesn't necessarily belong to any of the members, whereas owned communities are

organized by, and for the sake of, some centralized entity.

One example is Patreon members' areas, which attract users by virtue of their

interest in the content creator, who has the right to kick anyone out of "their" space

at any time. Internal company chats on (say) Slack, are another example. Access to

the chat is justified by a person's status as a member of the company and is revoked

when that membership ends.

If the company or content creator decides to move the community to a new platform

(or delete it entirely), that's their prerogative. Members have neither the right nor

the incentive to move discussion to a platform not owned by the topic of discussion,

because the whole point is to be close to that person or entity. Doing so would make

the group into a discussion forum, because it would then be a group of outsiders,

rather than a group of "members".

This kind of community is inherently centralized, and so centralized control is a

feature, not a bug. The system administrator and the owner of the community are

either the same person or have a relationship of some kind. The admin may be an

individual contractor, but more often than not it's a software platform.

Companies rent Slack (the product) from Slack (the company) because they don't

want to bring the administration of a chat solution in-house. This is a reasonable

decision, but comes with certain costs—namely the platform users' privacy and

security. So, to the extent that an entity is likely to suffer abuse by the third party

they've contracted to host their chat platform, they should consider an alternative

third party or a self-hosted solution.

Because of the characteristics of owned communities, they don't benefit from a

protocol optimized for decentralization per se. Although to the extent that they

interoperate with other products using the same protocol, they may be able to

provide a superior value proposition in the form of cryptographic identity support,

signed data, and protocol-native content types.

Building Nostr

89

Commons

Finally, we have a type of community which I'm calling a "commons". This may not

exactly be the best name for it, but the idea is that this type of community is "owned"

in common by its members and self-organized through political means. By the way,

what I mean by "politics" is not mere bureaucracy, but communication and

cooperation for the purpose of creating of an environment that the community

inhabits, and which promotes their formation according to certain values. Politics is

the recognition that only humans can grapple with the complexity of human life

together. Fisher Ames describes it this way:

Politicks is the science of good sense, applied to public affairs, and, as those are

forever changing, what is wisdom to-day would be folly and perhaps, ruin to-morrow.

Politicks is not a science so properly as a business. It cannot have fixed principles,

from which a wise man would never swerve, unless the inconstancy of men's view of

interest and the capriciousness of the tempers could be fixed.

Politics involves values, responsibility, individual agency, leadership, and

compromise. In other words, it is a social phenomena which seeks to resist the

entropy of conflict by structuring reality into something hospitable to its inhabitants.

In this way, a digital commons must be organized in the same way as a state, a city, or

a home.

Self-organization does not imply a particular mode of organization, like a democratic

voting system or a cryptographic DAO. While a decentralized system of voting or

staking might be interesting (and appropriate to certain communities), more

conventional centralized techniques can still be used to manage a commons-type

community insofar as they don't conflict with the community's ability to hold its

leaders accountable.

In a commons-type community, the roles that a given member takes on are especially

important, because the commons is sustained by its members willingness to

participate in its cultivation. A commons-type group is not only an environment in

which a community exists, but the product of its members' activity.

Digital spaces that accommodate commons-type communities are therefore a very

large, and very difficult, design space. They can be supported by chat applications or

by owned group models, or even by digital spaces originally intended for discussion

groups or broadcast social media. But the selection or construction of a digital space

https://en.wikipedia.org/wiki/Fisher_Ames

Building Nostr

90

must be carried out in close partnership with the actual members of the community.

Roles and Spaces

In the vast majority of communities (not just commons-type communities),

membership is not binary, but exists on a spectrum. This is obvious in terms of

moderation and administration. If not all members are moderators, some members

have a role which grants them privileges not accorded to the other members of the

group.

But membership has other kinds of gradation in both formal and practical terms.

Formally, members may be granted access only to certain parts of the group or

certain abilities. Their content may be promoted more or less to other members of

the group.

Alternatively, members may be afforded the same nominal status as other members,

but participate more or less frequently. Their influence within the group may

increase or decrease organically based on the esteem that their peers have for them,

and not based on any procedural mechanism.

An example of gradations of membership in the real world is that of catechumens,

which in the Eastern Orthodox Church are not permitted to partake in the Eucharist

until they are baptized and chrismated. In the past, catechumens were even excluded

from the second half of the liturgy. This represents a literal architectural partition

which distinguishes between members.

These distinctions are nearly universal. The vast majority of communities benefit

from some form of partitioning of the spaces they inhabit. In a digital space, these

partitions can be erected along three different axes: identity, topic, and content type.

Splitting a space up by identity means applying a different set of access controls to

different members of the group. For example, within a chat application you might

have locked rooms that are accessible only to certain members. Access is granted

based on the member's role, either in a social sense or in a formal sense — for

example, depending on whether they've paid a subscription in order to gain access.

Partitions based on identity may not necessarily be enforced with access control, but

might exist for other reasons. Conversations may simply be irrelevant to certain

members of the community, rather than necessarily private.

Building Nostr

91

Digital spaces may be partitioned along topical lines as well. These may be longer-

lived topical discussions — for example, a "general" topic or an "announcements"

room — or they may be shorter-lived topical divisions, for example a conversation

related to an upcoming event.

Topical divisions exist for user convenience and to allow users to opt out of messages

they're not interested in. This allows the community as a whole to function without

cluttering the common area.

Finally, digital spaces may be partitioned by content type. For example, you might

have a company calendar which is accessible to all members, and which includes

events of any topic or author, but which only includes calendar events — not

microblogging posts or chat messages.

Calendars are an obvious example, but partitioning by content type can be used to

good effect in other ways as well. Certain conversations are better served by rapid-

fire short chat messages, which are often more synchronous than other forms of

written media. Other discussions might best be served by long, thoughtful posts

embedded in a slower medium like a series of articles. Some content may also be

more or less ephemeral, depending on content type. For example, a wiki should last

pretty much as long as the community does, whereas chat messages can be allowed

to recede into memory and potentially even be deleted after some time.

All three of these partitioning schemes — by membership, topic, or content type —

can be combined. Maybe only the company's secretary can create events on the

company calendar. Or maybe only the church's pastor can start a live stream.

Similarly, certain members might have access only to certain topics, like budgets or

facility maintenance.

And as usual, wherever there are interactions between different things, you get

combinatorial complexity. Special cases can be nuanced literally forever. A software

developer's job is never done because software is essentially the management of

emergent organic social complexity with linear, propositional, systematic tools.

Maybe AI will change all of this. Introducing AI agents into a community context can

be a great way to empower members to use the community's infrastructure in

unexpected ways, whether to do search and analysis, create new software solutions,

or simply accomplish one-off tasks. The deep integration of AI into software

solutions in general, and communities in particular, is inevitable, but care should be

taken to anticipate negative externalities that might result from its use.

Building Nostr

92

If, for example, a community includes an AI search tool in order to ask the community

as a whole a question, this can actually result in the slow dissolution of the social

bonds that hold a given community together. In other words, even if the question

"where can I find raw milk locally?" is answered ad nauseam, the question itself

serves as a basis for the development of relationships which is indispensable to

community formation.

Managing Complexity

In every community scenario, there is significant complexity involved in

implementation. Different group protocols on Nostr have attempted to manage this

complexity in different ways.

Some, like NIP 72, NIP 48, and Nostr MLS manage complexity within the protocol

itself. Others, like NIP 29, offload much of the complexity of access control to the

relay by means of server scripting or other customization.

This has an important trade-off in terms of flexibility and applicability to a given

community. The more functionality is defined by the protocol, the less able a given

community is going to be to adapt the protocol to its own purposes.

This relates to the decision on whether to use encryption or server-side access

controls to enforce access control policies.

In an encryption-based digital space implementation, all clients have to be on the

same page about what the group policy is, which means administration and

consensus has to be baked into the protocol itself. This may be done using a plugin

architecture, like what MLS has, but all clients still have to enforce the same set of

rules.

In general, lifting complexity into client implementations is the right decision because

"relays are repositories". But this is only true with respect to content type support,

not necessarily with respect to community organization, which is a form of access

control and therefore belongs conventionally in the domain of relays.

By pushing the implementation complexity of access control and membership

policies down to the relay, it becomes much easier to build interoperable clients.

Because all the client has to do is speak the content-type part of the protocol, the

relay can be allowed to manage access control and content curation using any

method without increasing the surface area of the interface that it exposes.

https://github.com/nostr-protocol/nips/blob/master/72.md
https://github.com/nostr-protocol/nips/blob/master/48.md
https://github.com/nostr-protocol/nips/pull/1427
https://github.com/nostr-protocol/nips/blob/master/29.md

Building Nostr

93

Trusted servers can also implement any policy encrypted groups can, even simulating

forward secrecy and post compromise security (without any of the guarantees

actually provided by a cryptographic implementation). Whether to use servers to

enforce group policy rather than a protocol leveraging encryption thus becomes a

question of whether the group's need for trustless, cryptographically-enforced

security and privacy outweigh its need for highly-customizable functionality. Server-

enforced policies are also going to be much cheaper to implement, since no protocol

work has to be done.

At the same time, almost anything a server does can also be automated within the

scope of an encrypted group. For example, if group access is granted or revoked

based on the status of a member's subscription (in the case of a paid group), a

program acting on behalf of a group moderator can implement whatever policy is

needed. So while encrypted protocols may be more rigid, and require more careful

design than server policies, they are able to provide a more robust solution over the

longer term.

Interface Complexity

Even in the case of server-enforced policy, clients can't be entirely passive. At the

very least, the different partitioning schemes I enumerated earlier has to be

supported by the interface that clients expose. However, different clients may

provide a different interface to the same groups. An interesting question here is

whether a diversity of interfaces makes digital spaces more or less habitable.

Imagine that you could cook a meal with someone else in two separate kitchens

simultaneously. You could use your kitchen, which you're familiar with, they could

use theirs. And if you have an appliance that they lack, they can hand the food over to

you, and you can use the appliance to process it.

Different clients have different affordances. In some ways, this is obviously

necessary. An administrator is going to need administrative tools, which are going to

be completely inert if presented to a regular, unprivileged user — it's not

unreasonable to provide these users with a separate tool tailored to that use case,

rather than cram administration into the same app used by regular group members.

But what about the partitioning of content? If one user uses a client which lumps all

chat conversations into a single view and another one separates them by topic, will

this cause failures of communication?

Building Nostr

94

In many cases, I think, yes. The only real solution to this is to include expected

behavior in the specification. For example, NIP C7 is one of the smallest NIPs in the

Nostr repository, in that it simply defines a kind that's used for chat messages with

almost no other concerns. But in that NIP is the stipulation that replies must not be

deeply nested, but should instead be presented linearly. This provision is completely

unenforceable, but is vital for providing the same user experience across clients.

In this chapter I've only scratched the surface of what communities are and how to

serve them best within a digital medium. The point I most want to get across is, when

developing solutions for communities we should not be afraid of the introduction of

multiple sub-protocols which cater to different types of community.

Building Nostr

95

Appendix A: Alternatives to Nostr

I hope that over the course of this book I have made it clear that Nostr is a unique and

compelling solution to the decentralization of social media. But at the same time, it

has numerous flaws and trade-offs that make it difficult for developers to use, and

which leave it open to attacks on the protocol.

Nostr is generally optimized not to create an ideal solution, but to create a "good

enough" solution. In a sense, Nostr trades technical purity for social utility, and this

may not be the right trade-off.

Of late there has been a proliferation of AI-built Nostr applications. In one sense this

is great because it allows individual Nostr users to scratch their own itch and to

create products for other people. It also means more use cases are served by Nostr's

identity and architecture. But at the same time, it saturates the ecosystem with

noise, and to the extent that these applications are architecturally flawed, they may

actually undermine the decentralization of Nostr.

It's neither easy nor straightforward to implement relay selection heuristics,

application handler selection, and web of trust analysis. These things are largely

invisible both to developers hoping to accomplish a particular task and to users

intending to use their solution. But ignoring them results in spam, missing content,

and centralization forces. I hope that the Nostr community can exercise discipline to

maintain the integrity of the protocol rather than use it as a way to spin up

applications that aren't serious and won't be maintained.

Open source software is not just the publishing of code. It is the commitment on the

part of the developer to maintain it, and to work with the community that forms

around it. The same is true of Nostr. Tragedies of the commons are the natural end

state for any shared project. We have to care, and we have to act to protect the

things that we love.

With that said, I want to enumerate some alternatives to Nostr and describe in brief

why I don't see them as viable solutions to decentralizing social media.

Matrix and ActivityPub

I'm handling both Matrix and ActivityPub at the same time because their

Building Nostr

96

architectures are very similar, and so the same criticisms apply to both.

Both protocols are built around federation between "home servers", which have the

ultimate ability both to authenticate user activity and store content. User identity is

not cryptographic, which means that if a home server in either system deplatforms a

user, they lose their identity. Data is not signed by users and so it can't be re-

uploaded to other home servers.

Neither protocol has credible exit — both systems are the application of the

centralized platform model to a decentralized platform model. But the

administrators of these platforms are no less powerful within their domain, and in

many ways are less acountable; large companies have to follow the law, and are

highly sensitive to the effect their actions have on their reputation. Mastodon server

admins are far less accountabile to their users.

Small servers are also far less stable and might disappear for any number of reasons

other than deplatforming. The only way to have sovereign identity on Mastodon is to

run your own home server, which is not something most people are willing to

undertake. Federated systems make the fatal mistake of orienting themselves

around servers, not users.

Scuttlebutt

Scuttlebutt is the spiritual precursor to Nostr in a lot of important ways — in both

cases, cryptographic identity puts users are at the center of the network, and servers

are no more than dumb relays that allow user devices to communicate. In Scuttlebut,

servers (also called "pubs") were an optional addition to the network topology, since

applications were originally built to communicate peer-to-peer.

Scuttlebutt has one main flaw, however, which is that each user event is linked to the

previous one published on that device. This means that in order to validate the most

recent event by a particular key, you have to download all of that user's data. This

doesn't scale to a larger social network, where you might only want a single event

from thousands of different users.

Another problem with Scuttlebutt is that a single key can't be used for multiple

applications at the same time. Because data is linked, unsynchronized use of the

same key for signing data would result in a fork in a user's event chain, and one of the

messages would be dropped. This could be solved in many ways, but in practice

Scuttlebutt has encouraged its users to use a separate identity for each device, which

Building Nostr

97

makes it harder to maintain an identity in different contexts and across time

Nostr is inspired by and builds on Scuttlebutt's successes.

Pubky

Pubky is a social protocol created by John Carvalho, which uses cryptographic

identity and home servers.

There are two parts to Pubkey. First, cryptographic identities are used to create and

maintain entries on the Mainline DHT in order to route requests to the correct

server. The Mainline DHT is the most used DHT in existence and is highly Sybil-

resistant, which makes it a much better index than Nostr relays can provide.

On Nostr, indexes are simply relays that store a particular kind of event. This works

ok, but is an area where Nostr might borrow from Pubky in order to improve the

resilience of Nostr bootstrapping. Unfortunately, Mainline requires the use of a

different elliptic curve, and so a different DHT will need to be used or Nostr keys will

have to be adapted to whatever curve Mainline uses.

The second half of Pubky is home servers, which have the same problems that

Mastodon and Matrix home servers do, except that they can't nuke user identities

(since identities are cryptographic). However, content is not signed, and is stored

only on a single home server. For most people, servers are going to be hosted by a

third party, which would then have the ability to censor any content it chooses.

Pubky almost gets user-centric network architecture right, but fails to solve the

problem of aligned storage.

Bluesky

Bluesky was originally intended to be something very like Nostr. And on paper it is —

the architecture is sophisticated, and certain problems are addressed that Nostr

doesn't try to tackle (like a global view of the network).

But in practice, Bluesky has only managed to re-invent centralized social media on a

new architecture. Because of a desire for a complete view of the network, Bluesky

clients access content through "app views" powered by a "firehose" relay which

collects data from "personal data servers" across the network. This firehose becomes

https://www.pubky.org/
https://en.wikipedia.org/wiki/Mainline_DHT

Building Nostr

98

a centralized chokepoint which is expensive to run at scale, pricing out smaller

administrators and making users dependent on a third-party server.

Because of this, Bluesky's relays and app views are mostly (if not entirely) run by

Bluesky itself. This in turn allows them to implement censorship, ban users, and

provide premium features like account verification.

Blue Sky seems to be turning out to be the same kind of next generation monolithic

social media platform with all the same problems — but with a more sophisticated

architecture.

What Makes Nostr Different

In contrast to all these alternatives, Nostr is the only one that provides both

cryptographic identity and decentralized access to content (powered by signed data

and redundant storage). This combination orients the network around its users, not

its platforms.

An important implication of this architecture is Nostr's tolerance for network

partitioning. On Nostr, there is no "global". This may at first seem like a flaw, but only

because we have so thoroughly accepted the fallacious idea that a global view can

exist at all.

Internet platforms invariably simulate a "global" view of the "network". But in the

case of social media platforms, this "network" is no more than a database that they

host, and which excludes mountains more social data that doesn't reside on the

platform. In the case of search engines, the "network" that the internet forms is

genuine, but is largely unavailable for indexing by search engines — whether because

of access controls, robots.txt directives, or darknet content.

In the real world, there is no global view. In real life, a global view would be more a

liability than an asset. Even if we had a way to filter out the immense amount of noise

coming from other continents, languages, and viewpoints, the ability to omnisciently

navigate to one or another viewpoint would only serve to erode the sense of

belonging we get by being in a particular place, time, family, community, culture. The

vast majority of people, opinions, events, and facts that exist in the world are

irrelevant to my life. Network partitioning is how humans function in a social context.

Because of its dual reliance on relays and cryptographic identity webs, Nostr is able

to align its network topology with the social graph. This means that social

Building Nostr

99

connections can span multiple relays, and relays can serve multiple social clusters.

But it also means that not all parts of the network need to be connected in order for

people to make the particular connections that bring their life meaning. This is the

promise of decentralization. Nostr does not flatter us that we can be everywhere all

at once. Instead, it encourages digital localism — a more humane way to inhabit

digital spaces.

Starting Over

Nostr could be improved. It has numerous cosmetic design flaws, relies on aggressive

synchronization in order to avoid race conditions, a number of NIPs overload kinds

and tags, bootstrapping is a convoluted process, and incompatibilities between

clients are common.

Instead of having a single reference implementation that's used by all clients, Nostr

has dozens of separate SDKs, which means differences in paradigm and

nomenclature go all the way down to the bottom. In some ways, this is a feature

rather than a bug (see Chapter 5), but it also makes for a far more chaotic ecosystem.

What if we started from scratch with Nostr? We could have a single reference

implementation, built on sophisticated design decisions. We could use binary

protocols and CRDTs. Such a project could work.

But Nostr is more than a technical specification — it is a community. The ability to

hack on Nostr is part of what makes it special, and the applications that actually exist

are what make it real. None of them are perfect, and many of them will disappear

over time. But with Nostr, we have something. Whereas with a successor protocol,

we have nothing.

That situation could change. But it's possible to make the perfect the enemy of the

good. If Nostr is good enough — which is a big if — then abandoning it would reset the

clock on several years of development.

People have been developing decentralized protocols for as long as I've been alive.

Over and over they get captured. Maybe the destiny of Nostr is to get captured, but

at the same time to provide a brief respite for its users from the interference of

governments and corporations.

Nostr doesn't have to live forever in order to succeed. And Nostr doesn't have to be

used by the whole world in order to provide value. It's already providing value to the

Building Nostr

100

tens of thousands of people that use it every day.

I would like to see more adoption, and I would like to see a better technical

foundation, but we can't have all that we want. Part of building a commons is

compromise — not only with one another, but with reality as we find it.

Nostr is nothing but compromise. For that reason, I want to end this book by

encouraging you and every developer who builds on Nostr to embrace compromise.

A polis is a place where a community of people lives, whose lives in turn build and

rebuild the polis. Do not withdraw from the difficult work of coordination and

collaboration — instead, embrace the politics of protocol design.

As Aristotle puts it:

A state is not a community of living beings only, but a community of equals, aiming at

the best life possible. Now, whereas happiness is the highest good, being a realization

and perfect practice of virtue[...] different men seek after happiness in different ways

and by different means, and so make for themselves different modes of life and forms

of government.

We are living beings, and this is our polis.

https://classics.mit.edu/Aristotle/politics.7.seven.html

Building Nostr

101

Appendix B: Resources

NIPs

As discussed in chapter 5, many Nostr developers have opted to self-publish

specifications for protocol extensions. Below is a list of NIP repositories, including

both more or less "canonical" sources alongside third-party extensions.

NIPs on GitHub — the original NIPs repository

NIP PRs — proposals that may be anywhere between idea to partial adoption

BUDs — "Blossom Upgrade Documents"

NostrHub allows users to publish custom NIPs on nostr using kind 30817
DIPs — "Damus Improvement Proposals"

NKBIPs — "Nostr Knowledge Base Implementation Possibilities"

Custom NIPs for 0xChat

Also see this discussion about third-party NIPs. If any sources of specs are missing

from this list, please contact me so I can add them.

Protocol development

Many protocol features exist in the wild without documentation. Below are some

resources that can help with designing or discussing protocol features.

NostrBook summarizes protocol details, including NIPs and kinds

NostrHub surfaces custom NIPs including comment sections and forking.

Undocumented Nostr Kinds is a registry of nostr event kinds found in the wild

without known documentation.

NostrDesign outlines best practices for designing Nostr applications

Nostr.how is an introductory guide with a number of related resources

Nostr.com is a good place to start learning about the protocol

App lists

There are hundreds of nostr apps — so many that it would be a full time job to track

and categorize them. Many are defunct or incomplete. See below for some resources

https://github.com/nostr-protocol/nips
https://github.com/nostr-protocol/nips/pulls
https://github.com/hzrd149/blossom/tree/master
https://nostrhub.io/
https://nostrhub.io/naddr1qvzqqqrcvypzqprpljlvcnpnw3pejvkkhrc3y6wvmd7vjuad0fg2ud3dky66gaxaqqxku6tswvkk7m3ddehhxarjqk4nmy
https://github.com/damus-io/dips
https://github.com/limina1/NKBIPs
https://github.com/0xchat-app/0xchat-core/tree/d0a6c3f33772fd497a1c7277d5c09821deecf9f6?tab=readme-ov-file#nips-for-0xchat
https://github.com/nostr-protocol/nips/pull/1214
https://nostrbook.dev/
https://nostrhub.io/apps
https://undocumented.nostrkinds.info/
https://nostrdesign.org/
https://nostr.how/en/what-is-nostr
https://nostr.com/

Building Nostr

102

for finding high-quality Nostr applications.

nostrapps.com - a curated list of high-quality nostr apps.

nostrapp.link - a decentralized directory of nostr applications, built on NIP 89.

NostrHub lists nostr applications, as well repositories hosted on nostr and

DVMs. Built on NIP 89, NIP 34, and NIP 90.

Noogle allows for browsing and making requests against certain kinds of

DVMs. Built on NIP 90.

Coracle Stuff - a curated list of nostr apps created by Coracle.

Fiatjaf's Stuff - a curated list of nostr apps created by fiatjaf.

https://nostrapps.com/
https://nostrapp.link/
https://github.com/nostr-protocol/nips/blob/master/89.md
https://nostrhub.io/apps
https://github.com/nostr-protocol/nips/blob/master/89.md
https://github.com/nostr-protocol/nips/blob/master/34.md
https://github.com/nostr-protocol/nips/blob/master/90.md
https://noogle.lol/
https://github.com/nostr-protocol/nips/blob/master/90.md
https://stuff.coracle.social/
https://stuff.fiatjaf.com/

	Contents
	Introduction: Nostr is for Builders
	1. Complex Problems, Simple Solutions
	The Economics of Censorship
	A Path Forward
	A Simple Protocol

	2. Events and Kinds
	A Single Data Type
	Numbers, not Names
	More Kinds, Less Ambiguity
	Time is Hard
	Content and Tags
	Behavior and Data
	Behavior and Data Part Deux
	Deleting Events
	Filtering Events
	A Light Touch
	Backwards Compatibility

	3. Signatures and Identity
	Information Wants to Be Free
	Publicity Technology
	Dis-intermediating Data
	Your Very Own Number
	Agency and Identity
	Identity Webs
	Holding Keys
	Naming Keys

	4. Relays are Repositories
	Why WebSockets
	Multi-Master
	Functional Relays
	Replication and Routing
	The Outbox Model And Friends
	Bootstrapping
	Relay Hints
	Content Migration
	Relays as Transport
	Relay as Design Pattern
	Relay as Proxies
	Wrapping Up

	5. Radically Open
	Politics and Protocol
	Thinking in Public
	Backwards Compatibility
	Hackability
	Application Ecosystems

	6. Value for Value
	Money is Time
	Customers, Patrons, and Participants
	Paying It Forward
	Zaps and Nutzaps

	7. Communities
	Communities are for People
	Digital Architecture
	Social Clusters
	Group Chats
	Discussion Forums
	Owned Communities
	Commons
	Roles and Spaces
	Managing Complexity
	Interface Complexity

	Appendix A: Alternatives to Nostr
	Matrix and ActivityPub
	Scuttlebutt
	Pubky
	Bluesky
	What Makes Nostr Different
	Starting Over

	Appendix B: Resources
	NIPs
	Protocol development
	App lists

